
Homework 1: Random Events and Probability

UA CSC 380: Principles of Data Science

Homework due at 11:59pm on Sep 9, 2023

Deliverables Your must make two submissions: (1) your homework as a SINGLE PDF
file by the stated deadline to the gradescope (Homework 1). Include your code and output of
the code as texts in the PDF. and (2) your codes in HW01.ipynb file to a separate submission
(Homework 1 code). Each subproblem is worth 10 points. More instructions:

• You can hand-write your answers and scan them to make it a PDF. If you use your
phone camera, I recommend using TurboScan (smartphone app) or similar ones to
avoid uploading a slanted image or showing the background. Make sure you rotate it
correctly.

• Watch the video and follow the instruction for the submission: https://youtu.be/

KMPoby5g_nE

• Show all work along with answers to get the full credit.

• Paste all your codes and outputs in the report to get full credit.

• Place your final answer into an ‘answer box’ that can be easily identified.

• Map the questions with your solutions when submitting. Points will be deducted if
not following this.

• There will be no late days. Late homeworks result in zero credit.

Failure to follow the submission instruction will result in a minor penalty in credit.

You can choose to work individually or in pairs.

• If you choose to work in pairs, you are free to discuss whatever you want with your
partner; please make only one submission per group.

• Please do not discuss with people outside your group about the homework (refer to
the academic integrity policy in Lecture 1).

• If you have clarification questions, please feel free to post on Piazza so that it can
promote discussion.

1

https://youtu.be/KMPoby5g_nE
https://youtu.be/KMPoby5g_nE

Problem 1: Programming Setup

In this problem, let’s set up the python environment using Conda. You do not need to
submit any code for this problem.

Install Python 3 with Conda. Create your own virtual environment (see https://numpy.
org/install/ for an example), and in your virtual environment, install numpy, scipy, mat-
plotlib. Install Jupyter lab. Start the jupyter lab and start a jupyter notebook. Import
matplotlib.pyplot and plot anything in there (e.g., pyplot.plot([1,2,3],[4,5,6])).

Please screen capture the jupyter notebook screen (the code and the shown plot) and
report it in your submission. Once you are done, you may want to deactivate your own
virtual environment. If you have already been using Jupyter Lab, no need to reinstall; paste
the screen shots in your report.

2

https://numpy.org/install/
https://numpy.org/install/

Problem 2: Random Dice

This problem will compare the theoretical properties of a fair die to empirical results from
simulation. It will further familiarize you with the numpy.random library.

a) Assume that we roll two fair six-sided dice. Let E be the event that the two dice’s out-
comes sum to 3. What is the theoretical probability of E?

There are 36 possible outcomes in total.
The outcomes where two dice sum to 3 are:
(1,2), (2,1).
So, there are 2 outcomes out of 36 total possible outcomes where event E
happens.
Therefore,

E = 2
36 =

1
18

b) Initialize the random seed to 2023 using numpy.random.seed. Using numpy.random.randint,
simulate 1,000 throws of two fair six-sided dice. Paste your code here.

>>> import numpy as np

>>> np.random.seed(2023)

>>> dice1 = np.random.randint(6, size=1000) + 1

>>> dice2 = np.random.randint(6, size=1000) + 1

>>> sim = [(dice1[i],dice2[i]) for i in range(len(dice1))]

>>> sum_three = list(filter(lambda x: x[0] + x[1] == 3, sim))

>>> emp_freq = len(sum_three) / 1000

>>> print("%.3f" % emp_freq)

0.055

From these simulations, what is the empirical frequency of E (i.e., the percentage of times
this event occurred in simulation)?

Empirical frequency = 0.055

c) Reset the random seed to 2023 and repeat the above simulation a total of 10 times and
report the empirical frequency of E for each run. Paste your code here.

>>> np.random.seed(2023)

>>> for i in range(10):

... dice1 = np.random.randint(6, size=1000) + 1

... dice2 = np.random.randint(6, size=1000) + 1

... sim = [(dice1[i],dice2[i]) for i in range(len(dice1))]

... sum_three = list(filter(lambda x: x[0] + x[1] == 3, sim))

... emp_freq = len(sum_three) / len(sim)

... print("run %2d: %.3f" % (i + 1, emp_freq))

3

...

run 1: 0.055

run 2: 0.051

run 3: 0.056

run 4: 0.061

run 5: 0.060

run 6: 0.055

run 7: 0.052

run 8: 0.061

run 9: 0.068

run 10: 0.059

d) The empirical frequency of E from each simulation will differ. Why do these numbers
differ? Yet, the probability of E is fixed and was calculated in part (a) above. Why does
the probability disagree with the empirical frequencies?

The numbers for the empirical frequencies differ because the empirical fre-
quencies are formed from a collection of random obeservations.
In this case, the random observations are the random integers (in the range
of 1 to 6 inclusive) generated by numpy.
Therefore, each the empirical frequency for each run will slightly differ as
each is comprised of 1000 random observations.
More specificially, any given run can randomly have more or less rolls that
sum up to 3 than another run.
The theoretical frequency of E may not match all the emprical frequencies
becuase the theoretical frequency is calculated as the number of possible out-
comes that we are looking for divided by the total number of possible out-
comes. It is the expected frequency based on math and what we know of
the situation. On the other hand with empirical frequncy, we are collecting a
large number of observations and then making the calculation based on what
we observed. Thus, the expected frequency may vary from what we observe
due to the randomness of the data we are collecting.

e) In the above we have estimated the probability of an event by performing 1, 000 rolls of
two dice each. We generated 10 different estimates by repeating this procedure. How do
our results change if we instead perform 10, 000 rolls, and repeat 10 times? Try it, report
the difference, and discuss why. Paste your code here.

>>> np.random.seed(2023)

>>> for i in range(10):

... dice1 = np.random.randint(6, size=10000) + 1

... dice2 = np.random.randint(6, size=10000) + 1

... sim = [(dice1[i],dice2[i]) for i in range(len(dice1))]

... sum_three = list(filter(lambda x: x[0] + x[1] == 3, sim))

... emp_freq = len(sum_three) / len(sim)

... print("run %2d: %.4f" % (i + 1, emp_freq))

4

...

run 1: 0.0546

run 2: 0.0566

run 3: 0.0551

run 4: 0.0558

run 5: 0.0546

run 6: 0.0564

run 7: 0.0560

run 8: 0.0586

run 9: 0.0550

run 10: 0.0555

With 10,000 rolls, our 10 empirical frequencies are closer to the theoreti-
cal frequency E than with 1000 rolls. This is because the empirical frequency
gets closer the theoritical (expected) frequency with the increasing number
of observations. This is according to the law of large numbers. Intuitively, we
can also understand that with a larger sample size, all the (extreme) outliers
in the data will balance each other out since they occur equally enough at
both ends of the spectrum. Thus, we approach the expected frequency.

5

Problem 3: Coinflips

Suppose we flip a fair coin 10 times. What is the probability that the following events occur:
I recommend that you use the code like Problem 1 to debug your answers (but this debugging
itself is not part of the evaluation).

a) The number of heads and the number of tails are equal

R code P (X = 5):
dbinom(5, 10, 0.5)
0.2460938

b) There are strictly more heads than tails

R code 1− P (X <= 5):
1-pbinom(5,10,0.5)
0.3769531

c) The number of heads and the number of tails are equal, but now with the assumption
that the head probability is 0.2 (unfair coin).

R code P (X <= 5):
dbinom(5, 10, 0.2)
0.02642412

6

Problem 4: Conditional Probability

a) Assume that we roll two fair six-sided dice. What is P (sum is 5 | first die is 2)? What is
P (sum is 5 | first die is 5)?

P (sum is 5 | first die is 2) = 1
6

If the first die is 2, there are 6 possible rolls with first die as 2. Out of those
6 possible rolls, only 3 on the second die gives a sum of 5.
P (sum is 5 | first die is 5) = 0
If the first die is 5, there is no chance the sum adds up to 5 since the second
die has to be greater than 0.

b) Assume that we roll two fair four-sided dice. What is P (sum is at least 4)? What is
P (First die is 1)? What is P (sum is at least 4 | first die is 1)?

P (sum is at least 4) = 13
16

Writing out 4x4 grid of possbilities shows this (not shown).
P (First die is 1) = 1

4

Again, 4x4 grid shows this.
P (sum is at least 4 | first die is 1) = 1

2

Look at top row of 4x4 grid.

c) Suppose two players each roll a die, and the one with the highest roll wins. Each roll
is considered a “round” and further suppose that ties magically don’t happen (or those
rounds are simply ignored) so there is always a winner. The best out of 7 rounds wins
the match (in other words the first to win 4 rounds wins the match). Let W be the event
that you win the whole match. Let S = (i, j) be the current score where you have i wins
and the opponent has j wins. Compute the probability that you win the match, given the
current score, i.e., ai,j := P (W | S = (i, j)) for each of the 16 possible values of S = (i, j),
i, j ∈ {0, 1, 2, 3}.

(0, 0), (1, 1), (2, 2), (3, 3) = 1
2

To help you out a bit with part (c) above, I am providing the following hints:

1) If i = 4 and j < 4, ai,j = 1. OTOH, if i < 4 and j = 4, ai,j = 0. Can you see why?

2) Let Ri be a random variable where Ri = 1 if you win round i and Ri = 0 if you lose that
round. Note that P (Ri = 0) = P (Ri = 1) = 1

2
.

3) Recall that by the law of total probability P (W | S = (i, j)) = P (W,Ri+j+1 = 1 | S =
(i, j)) + P (W,Ri+j+1 = 0 | S = (i, j)).

4) By the probability chain rule P (W,Ri+j+1 | S = (i, j)) = P (W | Ri+j+1, S = (i, j))P (Ri+j+1 |
S = (i, j)).

7

5) Although it requires rigorous argument, for this problem, you can take it as given that
P (W | Ri+j+1 = 1, S = (i, j)) = P (W | S = (i + 1, j)) and P (W | Ri+j+1 = 0, S =
(i, j)) = P (W | S = (i, j + 1)). (Can you see why, intuitively?)

6) Find a way to write down ai,j as a function of ai+1,j and ai,j+1. This will help you compute
the answers in a recursive manner.

7) As a sanity check, when the current score is equal–that is S = (k, k)–then there should be
equal chance of either player winning the match, P (W | S = (k, k)) = 1

2
for k = 0, 1, 2, 3.

8

