
Homework 4: Statistics and Visualization

University of Arizona CSC 380: Principles of Data Science

Homework due at 11:59pm on Oct 15

Deliverables Your must make two submissions: (1) your homework as a SINGLE PDF
file by the stated deadline to the gradescope (Homework 4). Include your code and output of
the code as texts in the PDF. and (2) your codes in HW04.ipynb file to a separate submission
(Homework 4 code). Each subproblem is worth 10 points. More instructions:

• You can hand-write your answers and scan them to make it a PDF. If you use your
phone camera, I recommend using TurboScan (smartphone app) or similar ones to
avoid uploading a slanted image or showing the background. Make sure you rotate it
correctly.

• Watch the video and follow the instruction for the submission: https://youtu.be/

KMPoby5g_nE

• Show all work along with answers to get the full credit.

• Paste all your codes and outputs in the PDF report to get full credit.

• Place your final answer into an ‘answer box’ that can be easily identified.

• Map the questions with your solutions when submitting. Points will be deducted if
not following this.

• There will be no late days. Late homeworks result in zero credit.

Failure to follow the submission instructions will result in a minor penalty in credit.

You need to work individually.

• If you have clarification questions, please feel free to post on Piazza so that it can
promote discussion.

1

https://youtu.be/KMPoby5g_nE
https://youtu.be/KMPoby5g_nE

Problem 1: Bootstrap Confidence Interval for Pearson

Correlation (40pts)

This question is a continuation of HW3, Problem 3. Previously, we have built point estimates
of the Pearson correlation ρ and examined their variations; this time, we will construct ρ’s
confidence interval using the bootstrap method. Lecture slides and Chapter 8 of the textbook
(Wasserman) will be helpful if you need a refresher. To approach this question, you can build
on your own code for HW3 Problem 3, or the code in HW3’s solution guide (posted in D2L).

Recall the problem setup from last time: the data is drawn iid from the following Gaussian
distribution: P (X, Y ;µ,Σ) = N (µ,Σ), where the population mean is µ = (0, 0)T and the
population covariance matrix is

Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
=

(
1 0.5
0.5 1

)
.

The covariance matrix can be written in terms of the correlation coefficient,

ρ =
Cov(X, Y)

σXσY

=
0.5

1 · 1
= 0.5.

Also recall that our estimator of Pearson correlation is defined as:

ρ̂N =

∑
i(Xi − X̄)(Yi − Ȳ)√∑

i(Xi − X̄)2
∑

j(Yj − Ȳ)2

Where X̄ = 1
N

∑
iXi is the sample mean (and similarly for Ȳ).

Based on the dataset you generated from your HW3 Problem 3 a), denoted as S =
(Z1, . . . , ZN) (here each Zi = (Xi, Yi), N = 100 and using seed = 0), answer the following:

a) (5pts) Using np.random.choice subsample M = 100 points Z∗
1 , . . . , Z

∗
M from S with

replacement. Generate a new estimate from this data from your data ρ̂(Z∗
1 , . . . , Z

∗
M)

and report.

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> # set seed to 0

>>> np.random.seed(0)

>>> # insert your code for a)

>>> # setting random seed to 0

>>> np.random.seed(0)

>>> # init distribution mean

>>> mean = [0, 0]

>>> # init covariance matrix

>>> cov = [[1, 0.5], [0.5, 1]]

>>> # generate dataset for scatter plot

>>> x, y = np.random.multivariate_normal(mean, cov, size=100).T

2

>>> # generate subsample of 100 from dataset (with replacement)

>>> sub = np.random.choice(100, size=100, replace=True)

>>> # build x_sub

>>> x_sub = [x[i] for i in sub]

>>> # build y_sub

>>> y_sub = [y[i] for i in sub]

>>> # plot subsample

>>> plt.scatter(x_sub, y_sub, 10)

<matplotlib.collections.PathCollection object at 0x10f1510d0>

>>> # label x axis

>>> plt.xlabel("X")

Text(0.5, 0, 'X')

>>> # label y axis

>>> plt.ylabel("Y")

Text(0, 0.5, 'Y')

>>> # define rho_hat calculation function

>>> def rho_hat(x, y):

... # compute x_bar

... x_bar = sum(x) / len(x)

... # compute y_bar

... y_bar = sum(y) / len(y)

... # compute summation terms in numerator

... num_sum = [(x_val - x_bar)*(y_val - y_bar) for x_val, y_val in zip(x, y)]

... # compute numerator

... num = sum(num_sum)

... # compute summation terms in denominator

... d0 = [np.square(x_val - x_bar) for x_val in x]

... d1 = [np.square(y_val - y_bar) for y_val in y]

... # compute denominator

... denom = np.sqrt(sum(d0) * sum(d1))

... # compute and return rho_hat

... return num / denom

...

>>> # call rho_hat function and write result

>>> print('Plug-in estimator of subsample = ' + str(rho_hat(x_sub, y_sub)))

Plug-in estimator of subsample = 0.5547086113546251

3

b) (10pts) Repeat the above process B = 5, 000 times to generate bootstrap estimates
ρ̂M,1, . . . , ρ̂M,B. Each estimator should be based on a different subsample of M points
drawn, with replacement, from the original dataset S. Display a histogram of your
bootstrap estimates using matplotlib.pyplot.hist with 30 bins. Label your axes.

>>> # insert your code for b)

>>> # set seed to 0

>>> np.random.seed(0)

>>> # init array of rho_hats

>>> rho_hats = []

>>> # generate rho_hat for 5000 samples and append to rho_hats

>>> for i in range(5000):

... # generate subsample of 100 from dataset (with replacement)

... sub = np.random.choice(100, size=100, replace=True)

... # build x_sub

... x_sub = [x[i] for i in sub]

... # build y_sub

... y_sub = [y[i] for i in sub]

... # compute rho_hat for subsample

... rho_hats.append(rho_hat(x_sub, y_sub))

...

>>> # plot histogram of rho_hats

>>> plt.hist(rho_hats, density=True, bins=30, width = 0.01)

4

(array([0.05430911, 0. , 0.01357728, 0.08146367, 0.08146367,

0.21723644, 0.29870011, 0.48878199, 0.63813205, 1.12691404,

1.67000514, 2.37602357, 3.29927845, 3.8695241 , 4.86066537,

5.93327029, 6.21839312, 5.82465207, 6.88367972, 5.83822935,

5.39017919, 4.31757426, 2.9055374 , 2.2402508 , 1.41203687,

0.84179121, 0.58382294, 0.25796827, 0.10861822, 0.05430911]), array([0.25026926, 0.26499975, 0.27973024, 0.29446074, 0.30919123,

0.32392172, 0.33865222, 0.35338271, 0.3681132 , 0.3828437 ,

0.39757419, 0.41230469, 0.42703518, 0.44176567, 0.45649617,

0.47122666, 0.48595715, 0.50068765, 0.51541814, 0.53014863,

0.54487913, 0.55960962, 0.57434011, 0.58907061, 0.6038011 ,

0.6185316 , 0.63326209, 0.64799258, 0.66272308, 0.67745357,

0.69218406]), <BarContainer object of 30 artists>)

>>> plt.xlabel('rho_hat estimator value')

Text(0.5, 0, 'rho_hat estimator value')

>>> plt.ylabel('frequency')

Text(0, 0.5, 'frequency')

c) (5pts) Compare the histogram you obtained from b) with the one you previously got from
HW3, Problem 3c). Are they similar? Why?

They are similar in that they both resemble a normal distribution curve that
is centered around 0.5 with a slight left skew. They are similar since our new
histogram is generated from 5000 subsamples (with replacement) from the
original Pearson correlation estimator dataset. Any differences between the
histograms is due to the randomness in selecting subsamples.

5

d) (10pts) Compute and report the 95% confidence interval of ρ based on the bootstrapping
method learned in the class. Since what we learned in the class was for the sample
mean, you will have to modify it: replace any occurrences of the sample mean with the
correlation coefficient. (There are different versions of the bootstrap confidence bounds,
but you must use the one from the lecture to receive full credit.) Does the interval contain
the true correlation?

>>> # insert your code for d)

>>> # sort rho_hats

>>> rho_hats.sort()

>>> # original rho_hat estimator

>>> rh_estimate = 0.5046162424282595

>>> # bootstrap method

>>> bootstrap = [rho_hat - rh_estimate for rho_hat in rho_hats]

>>> # calculate 95 percent confidence interval

>>> q_u = bootstrap[int(np.ceil((1-(0.05/2))*(len(bootstrap) - 1)))]

>>> q_l = bootstrap[int(np.floor((0.05/2)*(len(bootstrap) - 1)))]

>>> # print confidence interval

>>> print("95% confidence interval: [" + str(rh_estimate - q_u) + ", " + str(rh_estimate - q_l) + "]")

95% confidence interval: [0.3876405305150534, 0.6294088646368858]

>>> print("This interval does contain the true correlation of 0.5.")

This interval does contain the true correlation of 0.5.

6

Problem 2: Basic data analysis and visualization (60pts)

Please see 380f23 hw04.ipynb.

7

HW04_part2

October 16, 2023

1 CSC380 Homework 4 : Data Analysis and Visualization
INDIVIDUAL HOMEWORK The homework is not collaborative anymore. Please respect the
academic integrity. Remember: if you get caught on cheating, you get F.

Overview This homework will familiarize you with the basic steps involved in reading, analyzing,
and visualizing data. We will use the Starbucks Nutrition Dataset which itemizes most of the food
and drink (12oz) options available at the Starbucks coffee chain. To simplify things we have pro-
cessed the data for you into a JSON file distributed with the homework (filename: starbucks.json).
We will be using the Pandas library to load and manipulate data. I briefly introduced all of the
Pandas functionality that will need in class and additional links are provided inline below.

Each subproblem is worth 10 pts.

What to turn in: - Please print the notebook containing the answers and results into a pdf file
(you can use File - Print). Submit the original file as well in the code entry in gradescope. All
cells are marked with instructions to insert your code. Please complete all cells as directed. In the
worst case where you cannot print it into a pdf file for some reason, you can create a Microsoft word
document and then copy paste screenshots showing your code and environment parts by parts. -
Should also submit your code separately as usual.

Installing Pandas To install any python library just type:

!pip3 install “library name”

Or, if you are using Anaconda then type:

!conda install “library name”

The cell below can be used to install Pandas. Or you can do it on the command line.

[24]: import pandas as pd

1.1 1. Basic Operations and Stats from the DataSet
Download the dataset and read the data as a python dataframe.

What is a python DataFrame ? - https://www.geeksforgeeks.org/python-pandas-dataframe/

Hint : Check out the read_json function - https://www.w3schools.com/python/pandas/pandas_json.asp

[25]: starbucks_df = pd.read_json('starbucks.json')
starbucks_df = pd.DataFrame(starbucks_df)

1

starbucks_df

[25]: Beverage_category \
0 Coffee
1 Classic Espresso Drinks
2 Classic Espresso Drinks
3 Classic Espresso Drinks
4 Classic Espresso Drinks
.. …
68 Frappuccino� Light Blended Coffee
69 Frappuccino� Blended Cr�me
70 Frappuccino� Blended Cr�me
71 Frappuccino� Blended Cr�me
72 Frappuccino� Blended Cr�me

Beverage Beverage_prep Calories \
0 Brewed Coffee Plain 5
1 Caff� Latte Nonfat Milk 130
2 Caff� Latte 2% Milk 190
3 Caff� Latte Soymilk 150
4 Caff� Mocha (Without Whipped Cream) Nonfat Milk 220
.. … … …
68 Java Chip Nonfat Milk 220
69 Strawberries & Cr�me (Without Whipped Cream) Nonfat Milk 230
70 Strawberries & Cr�me (Without Whipped Cream) Whole Milk 260
71 Strawberries & Cr�me (Without Whipped Cream) Soymilk 240
72 Vanilla Bean (Without Whipped Cream) Nonfat Milk 240

Total Fat (g) Trans Fat (g) Saturated Fat (g) Sodium (mg) \
0 0.1 0.0 0.0 0
1 0.3 0.2 0.0 5
2 7.0 3.5 0.2 30
3 5.0 0.5 0.0 0
4 2.5 1.5 0.0 5
.. … … … …
68 4.0 3.0 0.0 0
69 0.2 0.1 0.0 0
70 4.0 2.0 0.1 10
71 2.0 0.2 0.0 0
72 0.1 0.1 0.0 5

Total Carbohydrates (g) Cholesterol (mg) Dietary Fibre (g) Sugars (g) \
0 10 0 0 0
1 150 19 0 18
2 170 19 0 17
3 130 13 1 8
4 125 43 2 34

2

.. … … … …
68 240 43 2 39
69 190 53 0 52
70 190 53 0 52
71 180 51 1 49
72 230 56 0 55

Protein (g) Vitamin A (fDV) Vitamin C (fDV) Calcium (fDV) Iron (fDV) \
0 1.0 0.00 0.00 0.00 0.00
1 13.0 0.20 0.00 0.40 0.00
2 12.0 0.20 0.02 0.40 0.00
3 10.0 0.15 0.00 0.40 0.15
4 13.0 0.20 0.00 0.35 0.25
.. … … … … …
68 5.0 0.06 0.00 0.10 0.25
69 4.0 0.08 0.06 0.15 0.04
70 4.0 0.06 0.06 0.15 0.04
71 3.0 0.04 0.06 0.15 0.08
72 5.0 0.08 0.00 0.15 0.00

Caffeine (mg)
0 330
1 150
2 150
3 150
4 175
.. …
68 105
69 0
70 0
71 0
72 0

[73 rows x 18 columns]

Printing the entire dataframe looks cumbersome. How can we look at the first and last two rows
of a dataframe?

Check out .head() and .tail() - https://www.tutorialspoint.com/python_pandas/python_pandas_basic_functionality.htm

What are the first two and last two rows on the dataframe?

[26]: # first two rows of dataframe
starbucks_df.head(2)
last two rows of dataframe
starbucks_df.tail(2)

3

[26]: Beverage_category Beverage \
71 Frappuccino� Blended Cr�me Strawberries & Cr�me (Without Whipped Cream)
72 Frappuccino� Blended Cr�me Vanilla Bean (Without Whipped Cream)

Beverage_prep Calories Total Fat (g) Trans Fat (g) Saturated Fat (g) \
71 Soymilk 240 2.0 0.2 0.0
72 Nonfat Milk 240 0.1 0.1 0.0

Sodium (mg) Total Carbohydrates (g) Cholesterol (mg) Dietary Fibre (g) \
71 0 180 51 1
72 5 230 56 0

Sugars (g) Protein (g) Vitamin A (fDV) Vitamin C (fDV) Calcium (fDV) \
71 49 3.0 0.04 0.06 0.15
72 55 5.0 0.08 0.00 0.15

Iron (fDV) Caffeine (mg)
71 0.08 0
72 0.00 0

How can we access just a column of a dataset in pandas? https://cmdlinetips.com/2020/04/3-
ways-to-select-one-or-more-columns-with-pandas/.

It is okay if while printing you only see first and last few element and dots in between.

Print the column ‘Beverage_prep’

[27]: #insert your code here
starbucks_df[['Beverage_prep']]

[27]: Beverage_prep
0 Plain
1 Nonfat Milk
2 2% Milk
3 Soymilk
4 Nonfat Milk
.. …
68 Nonfat Milk
69 Nonfat Milk
70 Whole Milk
71 Soymilk
72 Nonfat Milk

[73 rows x 1 columns]

One beautiful thing about DataScience is that we can answer questions using data we have, but
without having to actually manually go through the data. Let’s try answering some questions?

4

1.1.1 a. On an average, how much caffine does a starbucks drink have?

Hint: Checkout the math functions of a pandas dataframe.

https://erikrood.com/Python_References/pandas_column_average_median_final.html

[28]: #insert your code here
starbucks_df[['Caffeine (mg)']].mean()
starbucks_df['Caffeine (mg)'].mean()

[28]: Caffeine (mg) 95.753425
dtype: float64

1.1.2 b. What is the typical (median) amount of caffeine in a starbucks drink?

[29]: #insert your code here
starbucks_df[['Caffeine (mg)']].median()
starbucks_df['Caffeine (mg)'].median()

[29]: Caffeine (mg) 100.0
dtype: float64

1.1.3 b. What is the maximum amount of caffine you can find at starbucks in its
drinks?

[30]: #insert your code here
starbucks_df['Caffeine (mg)'].max()

[30]: 330

1.1.4 c. What is the least amount of caffine you can find at starbucks in its drinks?

[31]: #insert your code here
starbucks_df['Caffeine (mg)'].min()

[31]: 0

1.2 2. PieChart
Let’s explore the dataset we have a bit more further

1.2.1 a. What are the different type of Drinks (ie Beverage Category)that Starbucks
has? How much of each?

Hint - Checkout pandas value_counts() function.

[32]: #print the different beverage category and how much of each here

#insert your code here
starbucks_df['Beverage_category'].value_counts()

5

[32]: Beverage_category
Classic Espresso Drinks 14
Tazo� Tea Drinks 13
Frappuccino� Blended Coffee 12
Signature Espresso Drinks 10
Smoothies 9
Shaken Iced Beverages 6
Frappuccino� Light Blended Coffee 4
Frappuccino� Blended Cr�me 4
Coffee 1
Name: count, dtype: int64

Let’s make these more appealing. Plot these as a pie chart

[33]: import matplotlib.pyplot as plt

beverage_category_counts = starbucks_df['Beverage_category'].value_counts()
labels = beverage_category_counts.index.tolist()
sizes = beverage_category_counts.values

def make_autopct(values):
def my_autopct(pct):

total = sum(values)
val = int(round(pct*total/100.0))
return '{p:.2f}% ({v:d})'.format(p=pct,v=val)

return my_autopct

fig, ax = plt.subplots()
ax.pie(sizes, labels=labels, autopct=make_autopct(sizes))
plt.show()
beverage_category_counts.plot.pie()
plt.ylabel('')

6

1.3 3. Bar Chart
Suppose you have a very calorie conscious friend. But they really like to get the drinks at Starbucks.
As a budding Data Scientist, you want to help them out.

1.3.1 a. What is the drink with the least amount of calories at Starbucks

Hint : Check this out ==> https://www.interviewqs.com/ddi-code-snippets/rows-cols-python

[34]: #insert your code here
min_cal = starbucks_df['Calories'].min()
starbucks_df.loc[starbucks_df['Calories'] == min_cal]

[34]: Beverage_category Beverage Beverage_prep Calories Total Fat (g) \
25 Tazo� Tea Drinks Tazo� Tea Plain 0 0.0

Trans Fat (g) Saturated Fat (g) Sodium (mg) Total Carbohydrates (g) \
25 0.0 0.0 0 0

Cholesterol (mg) Dietary Fibre (g) Sugars (g) Protein (g) \
25 0 0 0 0.0

Vitamin A (fDV) Vitamin C (fDV) Calcium (fDV) Iron (fDV) Caffeine (mg)
25 0.0 0.0 0.0 0.0 95

#insert your code hereBut they are quickly bored of this drink. I mean, it’s only natural.

So, let’s recommend them a beverage category instead.

First let’s find on an average how much calories do each beverage category have?

7

Hint - Checkout groupby function. The first example in this page is what we are trying to do.
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html

[35]: grouped = starbucks_df.groupby(['Beverage_category'])['Calories'].mean().
↪sort_values()

1.3.2 b. Plot a bar Graph

Let’s make this visually appealing by plotting a bar graph, where the height of the bar plot is
average amount of calories.

Hint : Check this out -> https://benalexkeen.com/bar-charts-in-matplotlib/

[36]: #insert your code here
grouped.plot.bar()
plt.ylabel('Average amount of calories')

[36]: Text(0, 0.5, 'Average amount of calories')

8

1.3.3 By looking at the graph, which beverage category has the least average calories?

[37]: # print the name of the category
print('Coffee')

Coffee

Let’s keep looking

9

1.3.4 By looking at the graph, which beverage category has the second least average
calories?

[38]: # print the name of the category
print('Shaken Iced Beverages')

Shaken Iced Beverages

This gives us some idea of how much calories to expect in each beverage category. But we know
from our previous classes that taking just the mean is not a good representation of how the values
are spread. In this case, while the average is useful, we need to know how it is spread across various
drinks within a beverage category.

1.3.5 What is the standard deviation of calories within each beverage categories?

[39]: std = starbucks_df.groupby(['Beverage_category'])['Calories'].std().fillna(0).
↪sort_values()

std

[39]: Beverage_category
Coffee 0.000000
Frappuccino� Blended Cr�me 12.583057
Smoothies 13.017083
Shaken Iced Beverages 18.618987
Frappuccino� Blended Coffee 36.711405
Frappuccino� Light Blended Coffee 42.426407
Signature Espresso Drinks 71.561939
Classic Espresso Drinks 71.649521
Tazo� Tea Drinks 87.405627
Name: Calories, dtype: float64

If you get a nan for Coffee in the above cell, just add .fillna(0) at the
end. To read more about fillna(0) - https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.fillna.html

[]:

Now Let’s incorporate this info into the bar chart as well. We want a bar chart where there is 1 bar
for each beverage category, the height is average calories, and error bars representing +/- sample
STDEV Hint : go back to https://benalexkeen.com/bar-charts-in-matplotlib/

[40]: #insert your code here
grouped.plot.bar(yerr=std)
plt.ylabel('Average amount of calories')

[40]: Text(0, 0.5, 'Average amount of calories')

10

Look how easy it is to understand that many numbers when visualised well!

Awesome work so far!!

1.4 4. Scatter plot
Now another friend of yours, who absolutely loves Caffeine came to you for a recommendation.They
want to know what are the top drinks with the most Caffeine in Starbucks. They would like to
know how much sugar each of them may have too, since they would like to reduce that.They don’t
like numbers much,so we want to present this to them in a attractive way.

11

Let’s get started.

Let’s sort the dataframe based on Caffeine

Hint: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html

[41]: starbucks_df.sort_values(by=['Caffeine (mg)'])

[41]: Beverage_category \
36 Tazo� Tea Drinks
70 Frappuccino� Blended Cr�me
69 Frappuccino� Blended Cr�me
52 Smoothies
51 Smoothies
.. …
4 Classic Espresso Drinks
6 Classic Espresso Drinks
5 Classic Espresso Drinks
10 Classic Espresso Drinks
0 Coffee

Beverage Beverage_prep Calories \
36 Tazo� Full-Leaf Red Tea Latte (Vanilla Rooibos) 2% Milk 190
70 Strawberries & Cr�me (Without Whipped Cream) Whole Milk 260
69 Strawberries & Cr�me (Without Whipped Cream) Nonfat Milk 230
52 Strawberry Banana Smoothie Soymilk 290
51 Strawberry Banana Smoothie 2% Milk 290
.. … … …
4 Caff� Mocha (Without Whipped Cream) Nonfat Milk 220
6 Caff� Mocha (Without Whipped Cream) Soymilk 230
5 Caff� Mocha (Without Whipped Cream) 2% Milk 260
10 Caff� Americano Plain 15
0 Brewed Coffee Plain 5

Total Fat (g) Trans Fat (g) Saturated Fat (g) Sodium (mg) \
36 4.0 2.0 0.1 15
70 4.0 2.0 0.1 10
69 0.2 0.1 0.0 0
52 2.0 0.4 0.0 5
51 2.0 1.0 0.0 5
.. … … … …
4 2.5 1.5 0.0 5
6 7.0 2.0 0.0 0
5 8.0 4.5 0.2 25
10 0.0 0.0 0.0 0
0 0.1 0.0 0.0 0

Total Carbohydrates (g) Cholesterol (mg) Dietary Fibre (g) Sugars (g) \

12

36 95 31 0 30
70 190 53 0 52
69 190 53 0 52
52 120 58 8 40
51 125 58 7 41
.. … … … …
4 125 43 2 34
6 105 37 3 26
5 140 42 2 34
10 15 3 0 0
0 10 0 0 0

Protein (g) Vitamin A (fDV) Vitamin C (fDV) Calcium (fDV) Iron (fDV) \
36 7.0 0.10 0.00 0.25 0.00
70 4.0 0.06 0.06 0.15 0.04
69 4.0 0.08 0.06 0.15 0.04
52 16.0 0.02 1.00 0.10 0.08
51 16.0 0.04 1.00 0.10 0.08
.. … … … … …
4 13.0 0.20 0.00 0.35 0.25
6 11.0 0.10 0.00 0.35 0.40
5 13.0 0.15 0.02 0.35 0.25
10 1.0 0.00 0.00 0.02 0.00
0 1.0 0.00 0.00 0.00 0.00

Caffeine (mg)
36 0
70 0
69 0
52 0
51 0
.. …
4 175
6 175
5 175
10 225
0 330

[73 rows x 18 columns]

What are the top 10 drinks with the most caffiene in them?

Hint : Remember.head() from earlier. Use that.

[42]: top10_Caf_Drink = starbucks_df.sort_values(by=['Caffeine (mg)']).tail(10)
top10_Caf_Drink

13

[42]: Beverage_category Beverage \
20 Signature Espresso Drinks White Chocolate Mocha (Without Whipped Cream)
19 Signature Espresso Drinks White Chocolate Mocha (Without Whipped Cream)
18 Signature Espresso Drinks White Chocolate Mocha (Without Whipped Cream)
17 Signature Espresso Drinks Caramel Macchiato
38 Shaken Iced Beverages Iced Brewed Coffee (With Classic Syrup)
4 Classic Espresso Drinks Caff� Mocha (Without Whipped Cream)
6 Classic Espresso Drinks Caff� Mocha (Without Whipped Cream)
5 Classic Espresso Drinks Caff� Mocha (Without Whipped Cream)
10 Classic Espresso Drinks Caff� Americano
0 Coffee Brewed Coffee

Beverage_prep Calories Total Fat (g) Trans Fat (g) Saturated Fat (g) \
20 Soymilk 370 10.0 5.0 0.0
19 2% Milk 400 11.0 7.0 0.2
18 Nonfat Milk 350 6.0 4.5 0.0
17 Soymilk 200 5.0 1.0 0.0
38 Plain 90 0.1 0.0 0.0
4 Nonfat Milk 220 2.5 1.5 0.0
6 Soymilk 230 7.0 2.0 0.0
5 2% Milk 260 8.0 4.5 0.2
10 Plain 15 0.0 0.0 0.0
0 Plain 5 0.1 0.0 0.0

Sodium (mg) Total Carbohydrates (g) Cholesterol (mg) Dietary Fibre (g) \
20 0 220 56 1
19 25 250 61 0
18 10 240 61 0
17 5 115 29 1
38 0 5 21 0
4 5 125 43 2
6 0 105 37 3
5 25 140 42 2
10 0 15 3 0
0 0 10 0 0

Sugars (g) Protein (g) Vitamin A (fDV) Vitamin C (fDV) Calcium (fDV) \
20 51 13.0 0.10 0.02 0.45
19 58 15.0 0.15 0.02 0.45
18 58 15.0 0.20 0.02 0.45
17 24 9.0 0.10 0.00 0.35
38 21 0.3 0.00 0.00 0.00
4 34 13.0 0.20 0.00 0.35
6 26 11.0 0.10 0.00 0.35
5 34 13.0 0.15 0.02 0.35
10 0 1.0 0.00 0.00 0.02
0 0 1.0 0.00 0.00 0.00

14

Iron (fDV) Caffeine (mg)
20 0.15 150
19 0.00 150
18 0.02 150
17 0.15 150
38 0.00 165
4 0.25 175
6 0.40 175
5 0.25 175
10 0.00 225
0 0.00 330

We don’t really care about the other nutritions at this point. Let’s just print what is needed.

[43]: top10_Caf_Drink[['Beverage','Sugars (g)','Caffeine (mg)']]

[43]: Beverage Sugars (g) Caffeine (mg)
20 White Chocolate Mocha (Without Whipped Cream) 51 150
19 White Chocolate Mocha (Without Whipped Cream) 58 150
18 White Chocolate Mocha (Without Whipped Cream) 58 150
17 Caramel Macchiato 24 150
38 Iced Brewed Coffee (With Classic Syrup) 21 165
4 Caff� Mocha (Without Whipped Cream) 34 175
6 Caff� Mocha (Without Whipped Cream) 26 175
5 Caff� Mocha (Without Whipped Cream) 34 175
10 Caff� Americano 0 225
0 Brewed Coffee 0 330

Oops, why does the same drink keep repeating but with different calories and caffeine? Give yourself
a minute before reading the next line for the answer.

Yes, they are prepared differently. Let’s add that too, since it is relevent information

[44]: top10_Caf_Drink[['Beverage','Beverage_prep','Sugars (g)','Caffeine (mg)']]

[44]: Beverage Beverage_prep Sugars (g) \
20 White Chocolate Mocha (Without Whipped Cream) Soymilk 51
19 White Chocolate Mocha (Without Whipped Cream) 2% Milk 58
18 White Chocolate Mocha (Without Whipped Cream) Nonfat Milk 58
17 Caramel Macchiato Soymilk 24
38 Iced Brewed Coffee (With Classic Syrup) Plain 21
4 Caff� Mocha (Without Whipped Cream) Nonfat Milk 34
6 Caff� Mocha (Without Whipped Cream) Soymilk 26
5 Caff� Mocha (Without Whipped Cream) 2% Milk 34
10 Caff� Americano Plain 0
0 Brewed Coffee Plain 0

Caffeine (mg)

15

20 150
19 150
18 150
17 150
38 165
4 175
6 175
5 175
10 225
0 330

Now that we have the beverages with the prep, sugar and caffeine,we need to show this to our
friend. Let’s plot them as a need scatter plot. Caffeine on x, Sugars on y.

[45]: x = top10_Caf_Drink['Caffeine (mg)'].to_list()
y = top10_Caf_Drink['Sugars (g)'].to_list()

beverages = top10_Caf_Drink['Beverage'].to_list()
beverage_prep = top10_Caf_Drink['Beverage_prep'].to_list()
labels = [str(beverages[i]) + ' with ' + str(beverage_prep[i]) for i in␣

↪range(len(top10_Caf_Drink))]

plt.figure(figsize=(8, 5))
plt.scatter(x, y,s = 50, c='lightblue')

plt.xlabel("Caffeine content")
plt.ylabel("Sugar (g)")
plt.title("Sugar in the top 10 Most caffienated Drinks.")

axes = plt.gca()
axes.set_xlim([0,450])

from adjustText import adjust_text

for i, txt in enumerate(labels):
plt.annotate(txt, (x[i], y[i]), fontsize=8)

texts = [plt.text(x[i], y[i], '%s' %labels[i], ha='center', va='center',␣
↪fontsize=7) for i in range(len(labels))]

adjust_text(texts)

plt.tight_layout()

16

Nice work!!

2 Conclusion
In this assignment, we were able to dowmload a dataset, load it as a pandas dataframe, explore
the dataset with basic statistical functions and visulaise many specifc examples to answer relevent
queries from the topic.

Congragulations!!

17

