
CS 477 HW #7

Questions completed: All undergrad level questions

Programming/Deliverables: MATLAB

Estimated time for assignment: 14 hours

A. Understanding the color constancy problem.

1. Estimate of the illuminant color for macbeth syl image.

First, we click points on the white patch of the image to get the coordinates of a

rectangle that is inside the white patch. MATLAB code for this part is shown below.

macbeth_syl = imread(’color_constancy_images/macbeth_syl-50MR16Q.tif’);

figure;

datacursormode on;

imagesc(macbeth_syl);

Then, we collect the RGB of the pixels in our rectangle. MATLAB code for this part

is shown below.

white_patch_macbeth_syl = [];

for i = 325:380

for j = 95:148

rgb = squeeze(macbeth_syl(i,j,:))’;

white_patch_macbeth_syl = [white_patch_macbeth_syl; rgb];

end

end

Next, we take the average RGB of these collected pixels and then compute a single scale

factor so that the max color channel value is 250. Finally, we multiply the computed

1



average RGB by our scale factor to get our estimate of the illuminant color. MATLAB

code for this part is shown below.

RGB_SW = mean(white_patch_macbeth_syl)

s = 250/max(RGB_SW)

RGB_SW = round(RGB_SW*s)

The resulting color of our illuminant is [238, 220, 250] in RGB.

2. Estimate of the illuminant color for macbeth solux image.

We repeat the same steps as described in part A1. MATLAB code for this shown

below.

macbeth_solux = imread(’color_constancy_images/macbeth_solux-4100.tif’);

figure;

datacursormode on;

imagesc(macbeth_solux);

white_patch_macbeth_solux = [];

for i = 325:380

for j = 95:148

rgb = squeeze(macbeth_solux(i,j,:))’;

white_patch_macbeth_solux = [white_patch_macbeth_solux; rgb];

end

end

RGB_UW = mean(white_patch_macbeth_solux)

2



s = 250/max(RGB_UW)

RGB_UW = round(RGB_UW*s)

The resulting illuminant is [132, 159, 250] in RGB.

3. Angular error between two light colors.

The angular error was computed in MATLAB using the code shown below.

angular_error = acosd(dot(RGB_UW, RGB_SW)/(norm(RGB_SW)*norm(RGB_UW)))

The code above computes the angular error as described in the assignment. The

angular error turned out to be 13.84◦.

4. Remapping image under canonical light.

Below in Figure 1, I provide the image triplet of the original image, the improved

image, and the canonical image.

(a) Original (blueish) image. (b) Improved (corrected) image. (c) Canonical image.

Figure 1: Image triplet generated in MATLAB showing the original image (a) compared to
its corrected version (b) and the canonical image (c). The corrected image (b) was produced
using the diagonal model computed from the illuminant RGB found in problems 1) and 2) (as
described in the slides)to map the original (blueish) image (a) to the one under the canonical
light (c). The brightness of the images were scaled by a constant factor for each image (based
on the max RGB for that image) so as to reduce confusion about differences between the
images being due to brightness instead of chromaticity (color without brightness).

3



Looking at the corrected image (b) versus the canonical image (c) above in Figure 1, it

appears that using the diagonal model provides a pretty good correction of the original

image (a). However, closely comparing the brighter tiles in (b) and (c) such as the

orange and yellow tiles, one can see that (c) is a bit brighter overall (at least with the

manual scaling of the brightness) than (b).

5. RMS error of the chromacity coordinates.

To compute RMS error, filter out dark pixels defined by R+G+B < 10 as requested

in the assignment. The MATLAB code for this is shown below.

A_solux = zeros(290525,2);

A_syl = zeros(290525,2);

B_corrected = zeros(291280,2);

B_syl = zeros(291280,2);

x = 1;

y = 1;

for i = 1:size(macbeth_syl,1)

for j = 1:size(macbeth_syl,2)

RGB_syl = sum(macbeth_syl_scaled(i,j,:));

RGB_solux = sum(macbeth_solux_scaled(i,j,:));

RGB_corrected = sum(macbeth_corrected_scaled(i,j,:));

R_syl = macbeth_syl_scaled(i,j,1);

G_syl = macbeth_syl_scaled(i,j,2);

R_solux = macbeth_solux_scaled(i,j,1);

G_solux = macbeth_solux_scaled(i,j,2);

R_corrected = macbeth_corrected_scaled(i,j,1);

G_corrected = macbeth_corrected_scaled(i,j,2);

4



if RGB_solux >= 10 && RGB_syl >= 10

r_solux = double(R_solux)/double(RGB_solux);

g_solux = double(G_solux)/double(RGB_solux);

r_syl = double(R_syl)/double(RGB_syl);

g_syl = double(G_syl)/double(RGB_syl);

A_solux(x,:) = [r_solux, g_solux];

A_syl(x,:) = [r_syl, g_syl];

x = x + 1;

end

if RGB_corrected >= 10 && RGB_syl >= 10

r_corrected = double(R_corrected)/double(RGB_corrected);

g_corrected = double(G_corrected)/double(RGB_corrected);

r_syl = double(R_syl)/double(RGB_syl);

g_syl = double(G_syl)/double(RGB_syl);

B_corrected(y,:) = [r_corrected, g_corrected];

B_syl(y,:) = [r_syl, g_syl];

y = y + 1;

end

end

end

The code above seems very verbose, but all it is doing is filtering out the dark pixels

and computing the r and g values as specified in the assignment.

Now that we have r and g, we compute the RMS error in terms of the chromaticity

coordinates (r, g) as defined in the assignment. The MATLAB code for this is shown

below.

5



d_A = sqrt(sum((A_solux-A_syl).^2, 2));

RMSE_A = sqrt(mean(d_A.^2))

d_B = sqrt(sum((B_corrected-B_syl).^2, 2));

RMSE_B = sqrt(mean(d_B.^2))

In the code shown above, the error between two pixels in chromaticity coordinates is

computed as the Euclidean distance between two (r, g) vectors. The RMS error is then

the square root of the average of the squared error values.

For part A (original (blueish) versus canonical), the RMSE was found to be 0.1149. For

part B (corrected versus canonical), the RMSE was found to be 0.0475. These results

make sense because you would expect the corrected image to have a lower RMSE in

relation to the canonical image than the RMSE of the original image in relation to the

canonical image.

6. Estimating light color for remaining images using MaxRGB algorithm.

Estimates were computed using the MaxRGB algorithm described in the slides, and

the angular error was computed the same way as in problem 3. Note that the estimated

light colors are scaled so that the R, G, or B value is 250 as was done when finding the

light color in problems 1 and 2.

For apples2, the light color estimate is (182, 228, 250), and the angular error in relation

to the macbeth solux light is 9.80◦.

For ball, the light color estimate is (153, 177, 250), and the angular error in relation

to the macbeth solux light is 3.57◦. For ball solux specifically, there seemed to be

a camera artifact in the form of a vertical, white line located at the bottom middle

of the image. I chose to this filter out this white line as it could interfere with the

6



MaxRGB algorithm. I simply made it so that the MATLAB “max()” function could

not search below a certain point on the image as to avoid the whitest parts of the

white line artifact. This is not a perfect method as we cannot scan the rest of the

ball which has white parts around the level of the white line artifact. However, this

method was simple and effective as it reduced the angular error from 3.66 (originally

when the whole image was scanned for the max) down to the current reported value

of 3.57. Note that this should not be done for the gray-world method which relies on

averaging all the pixel values.

For blocks1, the light color estimate is (250, 242, 209), and the angular error in relation

to the macbeth solux light is 19.95◦.

The angular errors in relation to the macbeth solux light are consistent with the

MaxRGB algorithm assumption that each channel has an albedo somewhere in the

image that is the same as white. In apples2, you have shiny parts of the apple reflect-

ing back light which can serve as white albedo hence the second lowest angular error.

In ball, you have a part of the ball surface that is white hence producing the lowest

angular error. Finally, in blocks, there is no white or shiny surface hence producing

the highest angular error out of the three.

7



7. Displaying results as one figure and reporting RMS error.

(a) Original apple image. (b) Corrected apple image. (c) Canonical apple image.

(d) Original ball image. (e) Corrected ball image. (f) Canonical ball image.

(g) Original blocks image. (h) Corrected blocks image. (i) Canonical blocks image.

Figure 2: Image triplets of remaining solux images generated in MATLAB. For each scene
(row in the table), I followed the same process as in problem (4) for the macbeth image.
Also as in problem (4), I have scaled the image brightness so that the max R,G, or B value
is 250.

The RMS errors for the corrected images in relation to their respective canonical image

counterparts is reported as an output from MATLAB below.

RMSE_apples =

8



0.0608

RMSE_ball =

0.0494

RMSE_blocks =

0.0984

The ranking of the RMS errors (from lowest to highest) does indeed reflect the ranking

of the angular error for the scenes. This is intuitive because the angular error tells us

how far off our unknown light color estimate for each scene via the MaxRGB algorithm

was from the “true” color estimate of our unknown light from the macbeth solux image.

A higher degree of angular error tells us our unknown light color estimate was further

off from the real unknown light color so the diagonal model correction mapping should

have a higher (r, g) RMS error as well.

8. Repeating error computations using gray-world method.

The estimated illuminating color and the angular error (still in degrees) for each scene

using the gray-world method is reported as a MATLAB output below.

RGB_apples =

49 78 250

angular_error_apples =

19.62

RGB_ball =

129 167 250

angular_error_ball =

1.39

9



RGB_blocks =

250 154 180

angular_error_blocks =

23.43

The RMS error using the gray-world method is reported as a MATLAB output below.

RMSE_apples =

0.1382

RMSE_ball =

0.0554

RMSE_blocks =

0.1514

Based on the above reporting, it appears that the MaxRGB algorithm is working better

on this dataset based on higher RMS errors across the board and higher angular errors

for the apples and blocks scene but a lower angular error for the ball scene. How is it

that for the ball scene, the gray-world angular error can be lower than the MaxRGB

angular error, but, despite that, the gray-world RMS error is higher than the MaxRGB

RMS error? My understanding is that the diagonal model is directly reliant on the

color obtained from the method used (gray-world or MaxRGB), so I am stumped on

this. Perhaps it is a calculation error on my part, or that by some convention of

the computed ratios in the diagonal model, you could experience a higher RMS error

depending on the weight of the ratios of each channel despite a closer (r, g) color vector

to the real color vector.

10


