
1. Computing a canonical view image using photometric stereo

Below in Figure 1, I provide the image of the Lambertian surface computed from

photometric stereo.

Figure 1: Plot of our Lambertian surface computed from photometric stereo in MATLAB.
The X-axis represents the row index of our image matrix which grows downward, and the
Y-axix represents the column index of our image matrix which grows rightward. Although
the photometric stereo images had di!erent albedo in the four quadrants, our computed
Lambertian surface has uniform albedo. This was done by converting the normal vectors
obtained from non-homogenous least squares into unit vectors.

Looking at Figure 1 above, we can see a light and dark checkered pattern that is also

2



consistent with the light and dark pattern seen in the photometric stereo images, just

as a visual check.

Since our Lambertian surface image is an orthographic projection, meaning that the

point (x,y,z) is simply projected to (x,y,0), only the Z component of our normalized

normal vectors a!ect the Lambertian luminance of their respective points (pixels) on

the surface. In MATLAB, this means we only needed to look at the Z-component of

our normalized normal vectors in order to compute the brightness of that pixel. We are

working in gray scale so we set the three RGB channels to that singular Z-component

value. The maximum Z-component value of our normalized normal vectors was 1.0 and

the minimum value was around 0.7, and these correspond respectively to the white and

gray points on our plot.

White on the surface image means that the surface at that point is perpendicular to

the camera direction, assummed to be at (0,0,1) in this assignment. Similarly, darker

shades mean that surface is pointing increasingly away from the direction of the camera

which corresponds to a smaller Z-component in our normalized normal vector. Notice

that there are no black areas on our surface which indicates that there is no surface

point that points at a perpendicular angle (or greater) relative to the position of the

camera.

3



2. Computing a depth map of the Lambertian surface

Below in Figure 2, I provide the computed depth map of the Lambertian surface as a

3D plot.

Figure 2: Depth map of the Lambertian surface plotted in MATLAB. The legend on the
right denotes the gradient encoding of the depth going from low (aqua blue) to high (neon
purple). The surface is sinusoidal in nature. Lighting was added (via MATLAB function
light()) directly above the mapped surface to highlight the areas that were perpendicular
to the direction of the camera at (0,0,1). This is seen by the reflectance of light on the
peaks, troughs, and saddle areas of the mapped surface.

In order produce the depth map as seen in Figure 2 above in MATLAB, you first have

to compute the partial derivatives fx = nx
nz

and fy = ny

nz
from our normal vectors, and

these partial derivatives signify the rate at which the height (Z-value) increases with

4



respect to the X-value and Y-value respectively.

Having computed fx, fy, we can then initialize a 2D, 400x400 depth map of all zeroes

to represent the height at every point of the Lambertian surface. Then, loop through

the depth map to add the cumulative sum of fx from index to index (i,j), and then loop

through the depth map once more to add the cumulative sum of fy to the cumulative

sum of fx that is already stored in depth map from the previous loop. This will result

in our final depth map which we can then use along with functions meshgrid() and

surf() in MATLAB in order to plot the surface as in Figure 2 above.

3. Relating the 3D depth map to the canonical view image.

The 3D depth map of the Lambertian surface in Figure 2 is consistent with the canon-

ical view image in Figure 1. The white areas in Figure 1 correspond to the peaks,

valleys, and saddle areas of the mapped surface in Figure 2 which makes sense be-

cause, physically speaking, these are the only parts of a sinusoidal surface that could

be perpendicular to the direction of the assumed camera above the surface, and we

defined maximum luminescence at this perpendicularity. The steep regions of Figure 2

correspond to the gray areas in Figure 1 because the normalized normal vectors at these

points would have a lower Z-component which is the only determinant of brightness at

that point for our photometric stereo.

One thing in particular are the minima and maxima of our mapped surface in Figure 2.

From our canonical image in Figure 1, although we see the areas that are perpendicular

to the direction of the camera (white), it is not obvious which of these areas are

peaks, or troughs, or saddle regions just from the canonical image alone. Here is my

understanding. When we compute the depth map using the normal vectors at every

point, we arbitrarily set our starting position at (0,0) to be at sea level (z=0). Then,

from our derivation of fx, fy, it is implicit that a normal vector pointing in the positive

5



X or positive Y direction means a negative change in the Z direction with respect to

that axis at that point, and a normal vector pointing in the negative X or negative Y

direction means a positive change in the Z direction with respect to that axis at that

point.

6



4. Calculating surface normal vectors from our depth map.

Below in Figure 3, I provide the canonical view image recreated from our 3D depth

map from Figure 2.

Figure 3: Canonical view image recreated from our 3D depth map. It is the same checkered
pattern as Figure 1 which serves as a check of our 3D depth map in Figure 2.

The canonical view image in Figure 3 was recreated from our 3D depth map by getting

the normal vectors from our computed fx, fy gradients in question 2. To get the normal

vectors from our gradients, you simply do (→fx,→fy, 1) and then normalize the normal

7



vectors again so that we have workable Z-values which we plot to get our recreated

canonical image as seen in Figure 3 above.

Notice that there is noise in the form of visible lines in Figure 3. I am not sure of

the exact cause, but my guess is that this is rounding error from finding the gradi-

ent (through division), and then re-normalizing the computed normal vectors (which

involves another division).

8


