
CS 477 HW #9

Questions completed: All undergrad level questions in MATLAB

A1. Visualizing SIFT keypoints.

Below in Figure 1, the collage of slide 1 and frame 1 is shown.

Figure 1: The left two images are a picture of slide 1, and the right two images are a picture
of frame 1. Every 10th keypoint along with their gradient vectors from the frame 1 sift file
were selected to be plotted in the top right image, and the corresponding keypoints and
their gradient vectors from slide 1 were plotted in the top left image. The corresponding
keypoints in slide 1 are the Euclidean distance nearest neighbors of the selected keypoints
of frame 1, computed from the 128-length descriptor vector of every keypoint. The bottom
two images show the same keypoints for the respective images connected by a red line to
indicate their nearest neighbor match.

Every 10th keypoint was selected to be plotted to reduce visual clutter. The func-

1



tion knnsearch() was used to compute the Euclidean distance nearest neighbor of

every selected keypoint from frame 1 to slide 1. Other notable functions used were

draw segment() which was provided in the assignment and quiver() which was used

to draw the keypoint vectors. Other than that, the main challenge of creating the

collage was using careful logic and programming to ensure correct generation of the

keypoints.

Below in Figure 2, the collage of slide 2 and frame 2 is shown.

Figure 2: The collage of slide 2 and frame 2 was generated using the same code that was
used to produce Figure 1.

2



Below in Figure 3, the collage of slide 3 and frame 3 is shown.

Figure 3: The collage of slide 3 and frame 3 was generated using the same code that was
used to produce Figure 1.

3



A2. Measuring error between features.

The top 5% best-matching keypoints based on Euclidean distance, cosine similarity,

and Chi-square test were plotted. To do this, P was set to 5%, and no keypoints were

skipped unlike in A1 where only every 10th point was selected to be plotted. Here,

we do not want to skip keypoints because we need to know the actual best-matching

keypoints that the different error measures give us. Figure 4 below shows the results

of all three error measures.

(a) Top 5% Euclidean distance
for slide/frame 1.

(b) Top 5% Euclidean distance
for slide/frame 2.

(c) Top 5% Euclidean distance
for slide/frame 3.

(d) Top 5% cosine similarity for
slide/frame 1.

(e) Top 5% cosine similarity for
slide/frame 2.

(f) Top 5% cosine similarity for
slide/frame 3.

(g) Top 5% Chi-square for
slide/frame 1.

(h) Top 5% Chi-square for
slide/frame 2.

(i) Top 5% Chi-square for
slide/frame 3.

Figure 4: The top 5% of keypoints for the three different error measures (Euclidean distance,
cosine similarity, and Chi-square test) for the 3 pairs of slide/frame images.

My findings were that Euclidean distance and cosine similarity produced the exact

same pairings of keypoints. This is expected because angular distance is basically the

same as Euclidean distance when you think in terms of the components of a vector in

the vector space. The Chi-square error measure however did not produce acceptable

4



results as seen by Figure 4(h). I am not sure why Chi-square performed worse than

the other two error measures as Chi-square is a valid error measurement for a feature

vector that is a histogram count. It could be that my Chi-square function was incorrect,

or that the nature of squaring values makes it more sensitive to noise and therefore

increases the likelihood of producing unwanted results as seen in Figure 4(h). Based

on my findings, I would select Euclidean distance at P = 5% although cosine similarity

produces the same results. Higher and lower P values that were above and below 20%

were also tested, but nothing interesting came out so I settled on P = 5% as a nice

number that produced matches mostly within the slide portion of every frame (at least

for Euclidean distance and cosine similarity).

5



A3. Pruning keypoint matches.

Below in Figure 5, a Lowe ratio of 92% was used to prune the keypoint matches found

from Euclidean distance. The filtering was done by first computing the nearest and

second nearest Euclidean distance neighbor of every keypoint of the frame and then

filtering out keypoint matches if the second nearest neighbor distance was too close in

value (over 92% ratio) compared to the nearest neighbor distance.

(a) Lowe ratio of 92% for slide/frame 1.

(b) Lowe ratio of 92% for slide/frame 2.

(c) Lowe ratio of 92% for slide/frame 3.

Figure 5: The keypoint matches for Euclidean distance were filtered out if the nearest
neighbor distance was greater than 92% of the second nearest neighbor distance. The original
Lowe ratio of 80% filtered out too many matches to be of use.

Using the a Lowe ratio of 80% produced too few matches, so a final value of 92%

6



was decided after testing various thresholds. The Lowe ratio approach helped filter

out incorrect and/or undesirable keypoint matches and is therefore a good pruning

method to use alongside Euclidean distance error measure. Comparing Figure 5 to

Figure 4(a-c), one can see that Lowe ratio pruning filtered out most of the incorrect

keypoint mappings from the Euclidean distance matching, specifically keypoints that

mapped more than once to another keypoint. I realize now that the effect of the Lowe

ratio pruning would have been easier to see if I used a higher P value in A2 to allow for

more filtering from Lowe ratio. Lowe ratio and the P value can be seen as two knobs

for fine-tuning results. It would have been interesting to see the results of a higher P

value and a lower Lowe ratio. For at least these 3 sets of images, matching the SIFT

feature vectors as close as possible (Euclidean distance) and than filtering out weaker

candidate feature vectors that look close to other feature vectors (Lowe ratio) seems to

work well, but maybe we could get away with using just one or the other at an extreme

threshold.

7



A4. Testing preferred error measure and threshold.

All combinations of P values and Lowe ratio values were tested in a nested for-loop. A

diagonal confusion matrix was produced with P = 73% and a Lowe ratio of 0.65. The

confusion matrix for this combination is shown below.

15 0 0

0 13 0

0 0 161

The maximum scoring combination if we are subtracting the summation of the non-

diagonal from the summation of the diagonal was P = 44% and a Lowe ratio of 1 (so

no Lowe ratio filtering). The confusion matrix for this combination is shown below.

302 215 36

52 233 22

55 13 525

There were many more interesting combinations. For example, we could optimize for

the skew caused by slide/frame 3 since the entire frame is basically the slide in this

case.

As long as the diagonal of confusion matrix contains the highest counts, we can say

that the combination of Euclidean filtering and Lowe ratio accurately detects the right

slide in the right frame. This is because the value of the ith row and jth column is

the number keypoints matched to the ith slide and the jth frame. Therefore, only

matches along the diagonal are correct. We can scale the confusion matrix as the

number of slides and frames grow, and it has the benefit of providing information on

the mismatches between slides and frames so that we can fine tune our parameters.

8


