CSC 480 Final Project Report

Shawn Kim
CSC 480: Principals of Machine Learning
University of Arizona
tkiml@arizona.edu

1 Introduction

The Kannada MNIST competition presents a computer vision challenge involving the recognition of
handwritten Kannada digits from zero to nine. Kannada is a language spoken by the inhabitants of
Karnataka, a state in southwestern India. This competition is a variation of the original MNIST digit
classifier case study that worked with arabic numerals from zero to nine. The evaluation metric for
Kannada digit classification is the percentage of handwritten Kannada digits accurately classified.

The motivation for this project is to explore fundamental machine learning concepts in computer
vision. This problem presents not only an opportunity to apply and practice material that we have
directly covered in class but also serves as a good introduction to computer vision as a whole. The
programming environment of choice for this project will be MATLAB, and all work is done in
MATLAB.

2 Background

The task is to train a classifier that can correctly label all hand-written Kannada digits. This will be
done by using a two step process of first preprocessing the images and then feeding the pre-processed
images into a machine learning algorithm.

The dataset itself consists of around 75,000 grayscale images of which 10,000 are reserved for the
validation set and of which 5,000 are reserved for the testing set. Each image is 28 by 28 pixels
for a total of 784 pixels per image. Since the images are grayscale, each pixel has one channel that
represents the intensity value of the pixel rather than three color channels for RGB. The intensity
value itself ranges from 0O to 255.

In Figure 1, the first set of zero to nine hand-written Kannada digits in the training set are visualized

to get an intuition of the dataset.
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Figure 1: In MATLAB, the first set of zero to nine hand-written Kannada digits in the training set
is visualized using the MATLAB imagesc () function. This function automatically scales up small
images to a viewable size (like our 28 by 28 pixel images) and maps grayscale values to colors based
on a colormap for easier distinguishability.




3 Approaches

The machine learning models used on the dataset are K-nearest neighbors (KNN) and a convolutional
neural network (CNN). The preprocessing techniques used are normalization, principal component
analysis (PCA), and Canny edge detection for KNN and normalization and data augmentation for
CNN.

3.1 Preprocessing

The preprocessing techniques as they apply to each respective machine learning model is discussed.

3.1.1 Normalization

Normalization was performed on the dataset. This negates effects like lighting inconsistencies in the
images which can be considered as a kind of noise in the dataset. KNN relies on distance metrics
(Euclidean distance) to determine the “nearness” of data points. If features have different scales, those
with larger ranges can disproportionately affect the distance calculation, leading to biased results.
Normalization is also standard for CNNs in the form of input normalization, batch normalization, and
layer normalization in order to stabilize training, prevent vanishing/exploding gradients, and improve
generalization of features.

A normalized dataset (so that all grayscale values were in the range [0, 1] for each image) was
achieved in MATLAB via the normalize () function.

3.1.2 Princple Component Analysis

PCA was performed on the normalized dataset to be used for KNN. PCA is a useful preprocessing
technique for KNN because it reduces the dimensionality of the dataset. This can help speed up
computation and potentially improve the performance of KNN by removing noisy or less informative
features. PCA however is not a good preprocessing technique for CNN as a CNN inherently learns
feature representations on its own which makes PCA redundant and unncecesary.

PCA on the dataset was performed in MATLAB via the pca() function. The number of principal
components was decided by whatever amount explained at least 95% of the variance. For the training
dataset, this resulted in 237 principal components which is a considerable reduction in dimensionality
remembering that the original flattened image vector was 784 pixels for each image.

In Figure 2, a pareto chart of the first ten principal components of the training dataset is shown.

3.1.3 Canny Edge Detection

Canny edge detection was also performed on the normalized dataset to be used for KNN. Canny edge
detection is useful for KNN because it reduces the input complexity by focusing only on edges, and
edges capture the digit’s shape and outline, which are critical for classification. Like PCA, Canny
edge detection was not used for CNN as a CNN inherently learns edge-like features on its own.

Canny edge detection was performed in MATLAB via the edge () function. Canny edge detection
results in a mappinng of pixel grayscale intensity values to 1 if the pixel lies an edge or 0 if otherwise.

In Figure 3, the same set of zero to nine hand-written Kannada digits from Figure 1 is now visualized
after Canny edge detection.

3.1.4 Combining Principal Component Analysis and Canny Edge Detection

PCA and Canny edge detection can be combined since one is a dimensionality reduction technique
while the other is a (surprise) edge detection technique.

Canny edge detection was fed into PCA to achieve a dimensionality reduction of the edge features.
This resulted in 337 principal components to explain 95% of the variance for the training set which is
notably higher than the 237 principal components for just PCA as previously explained.
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Figure 2: In MATLAB, the variance explained versus principal component pareto chart is generated
with the pareto() function. The first ten principal components are shown to have a combined
explained variance of close to 40%.

Figure 3: In MATLAB, the edge feature of our previous Figure 1 digit set is generated with the
edge () function. The edges of the digits are shown in yellow which is the max intensity value in the
imagesc () colormap.

In reverse, PCA fed into Canny edge detection would be an edge detection on the principal components
of the image vector, but in practice, the dataset projected onto its principal components do not represent
an image. Edge detection would not yield anything meaningful in this case.

3.1.5 Data Augmentation

Data augmentation was performed on the dataset to be used with our CNN. Data augmentation is
a crucial technique for improving the performance of CNNs by artificially expanding the training
dataset and making the model more robust to variations in data.

For the Kannada MNIST digit dataset, the augmentation techniques incorporated were transformations
like random rotation in the angle range [—45, 45], random scaling indepedently in the X and Y
directions in the scaling range [0.75, 1.25], and random translations independently in the X and
Y directions in the range pixel range [—2,2]. The newly augmented training dataset consisted of
120,000 images, 60,000 from the original and another 60,000 that were augmented from the original.

In Figure 4, data augmentation of our previous Figure 1 digit set is shown.

3.2 Model Results

An overview of how each of the models (KNN and CNN) was used and their results is discussed.



Figure 4: In MATLAB, data augmentation of our previous Figure 1 digit set is produced using func-
tions dataImageAugmenter () and augment (). You can see the transformed images realistically
mimic real variations in human handwriting to give our CNN a more robust dataset.

3.21 KNN

For KNN, k = 3,5, 7 were trained with the normalized, PCA, Canny edge, and Canny edge into PCA
training datasets using fitcknn (). The results on the test dataset are shown in Table 1.

Table 1: KNN Test Accuracy Results (%)

Dataset k=3 k=5 k=7

Non-normalized 71.90 71.46 71.09
Normalized 7190 7146 71.09
PCA 5.16 5.19 5.12
Canny edge 62.08 61.82 61.89

Canny edge/PCA  13.05 13.49 13.59

It appears that the normalized/non-normalized training dataset achieved the highest overall accuracy
on the testing dataset. The fact that the accuracy does not change between normalized and non-
normalized training data makes sense because normalizing the images just scaled every pixel value
down and did not change the Euclidean distance metric of KNN.

It also appears that PCA had the worse performing score. This indicates that PCA discarded important
features of the dataset even though it was supposed to keep the most important ones. PCA may not
have been the best preprocessing technique for our dataset since images were already relatively small
(28 by 28 pixels), so it could have been that all 784 pixels of information per image was necessary for
KNN to do somewhat well.

Canny edge had the second highest peforming score but was still lower than normalized/non-
normalized score. This is consistent with what is observed for PCA because, again, Canny edge
detection filters the image to only retain the edges of the digits which means that other features of
the digits are lost. It appears that our digit images are too small in size for advanced preprocessing
techniques to be effective.

Canny edge into PCA has an expected much lower score than just Canny edge because PCA further
discards information from the edge features that Canny edge detection filtered from the original
images.

Overall, PCA and Canny edge did no favors for KNN. KNN performed the best with all the pixel
information which intuitively makes sense because KNN is trying to make a classification based on
how close the pixels are to the label samples it has already seen.

3.22 CNN

For CNN, the MATLAB deep learning toolbox was used to program a CNN consisting of 5 layers; an
input layer, 3 convolutional layers, and a fully connected layer.

The input layer was defined for 28 by 28 grayscale images. The first convolutional layer used 3 by 3
kernels with 8 filters and padding to preserve the spatial size of the image. Batch normalization was



applied after each convolution layer to normalize activations, and Rectified Linear Unit (ReLU) was
used as the activiation function after each convolution. Furthermore, max pooling with a stride of
2 was also applied after each convolution to reduce spatial dimensions by a factor of 2. The fully
connected layer had 10 units corresponding to the 10 labels of 1 through 9. Softmax was used to
output the probabilities for each of the classes which was then fed into a classification layer for final
decision. For CNN training, an Adam optimizer was set with a learning rate of 0.001, and the number
of training epochs was set to 5.

In Table 2, the test results of the CNN trained on the non-augmented and augmented datasets are
shown. Both the non-augmented and augmented datasets are normalized.

Table 2: CNN Test Accuracy Results (%)

Dataset Accuracy Training Time
Non-augmented 75.57 1m49s
Augmented 87.28 3m43s

It appears that CNN was slightly more effective than KNN when using just the normalized, non-
augmented dataset. With the augmented dataset however, test accuracy increased by almost 12%
which shows that augmentation of the digit dataset was indeed effective for CNN.

4 Ablation Study

Since CNN was the best peforming model, an ablation study was done to experiment with the
convolutional layers of the CNN versus the dataset. The ablation study was performed by first
adding a layer and then gradually removing layers from the model and training on the augmented and
non-augmented datasets to see what happened. This is reported in Table 3.

Table 3: CNN Test Accuracy Results (%)

Convolutional Layer(s) Augmented Non-augmented

Four Layers 85.31 76.77
Three Layers 87.28 75.57
Two Layers 84.22 72.90
One Layer 77.54 70.01

Since more convolutional layers results in more hierarchical features of the image being learned, in
theory, the testing accuracy should go down as the layers are removed. This seems to generally be
the case for both the augmented and non-augmented datasets except for four convolutional layers
with the augmented dataset. This goes to show that fine-tuning a CNN is not just simply adding more
layers to the model, although it certainly does help up to three layers based on my findings.

5 Future Directions

In the future, I would like to experiment on improving the performance of KNN with other prepro-
cessing techniques such Scale Invariant Feature Transform (SIFT) vectors which seem promising for
Euclidean distance KNN. I would also try and experiment with the KNN training times, although I
think this avenue is limited since KNN needs to work with increasingly highy dimensional vectors to
increase accuracy, or so it seems based on my results.

For CNN, I would like to look into expanding the size and improving the robustness of augmentations
on the dataset as my experiments have shown that they have a great, positive impact on the accuracy
of the CNN. I would also like explore other avenues of image preprocessing that can further increase
the quality of the dataset like with data augmentation.

In general, I would also try to do the machine learning on my Windows PC next time since it actually
has a GPU for machine learning rather than doing it on my MacBook which just uses the CPU.
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