WS07 - Law of Large Numbers and Central Limit Theorem

Shawn Kim

Directions: Please upload a PDF to Gradescope that includes both your written responses and corresponding
R code inputs/outputs (if requested) for each problem.

Special Directions When responding to the explanation questions, it may be helpful to look back at the
Monte Carlo with importance sampling section of the notes. Be sure to demonstrate the correct use of
mathematical notation in your work. When showing your work, clearly show your reasoning by entering
all necessary algebra/calculations as text or inserting a clear well-cropped image of your work using an R
chunk.

1
Probem 1. Consider the function g(x) = whose numerical integral from z = 0 to z = 9/16

sin(exp(v/z) — 1)

is defined in R with the name gx.

# NOTE: To define a function in R follows the general structure below,
# function_name <- function(z) {define function here, return function valuekl
# NOTE: You've seen this in WSO8, but it can by tricky, so we are helping out
# again
gx = function(x) {

gx = (sin(exp(sqrt(x)) - 1))°-1

return(gx)

In this problem, we would like to estimate 09/ 16 g(z) dz using Monte Carlo simulations.

NOTE: In R, we can estimate the integral using the integrate() command to get f09/16 g(x) dx ~ 1.31075.

integrate(gx, 0, 9/16)

## 1.31075 with absolute error < 1e-06

Problem 1 Part a) Below is a plot of g on the interval (0,9/16]. Explain why we would expect that impor-
tance sampling would be useful for getting an accurate measurement of our definite integral fog/ 16 g(x) da?

curve(gx, 0, 9/16, D5z "g(x)")
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It would be important to consider importance sampling for getting the definite integral for this
plot because we can see from the graph that the highest g(x) values are when x is approaching
0 which would have more of an impact on the definite integral estimate. We should use an
appropriate PDF to draw samples over X that will give more chance for the high values of
g(x) to be considered (and then weigh sum of g(x) by the chance that x happened)

Problem 1 Part b) Use the simple Monte Carlo integration procedure to produce 1000 estimates

of fog/ 10 g(x) dx based on a sample of 240 uniform random variables. Determine the mean and standard

deviation of the 1000 estimates of f09/16 g(x) dx.

set.seed(2022)
int_gx_simple240 = rep(0, 1000) # wector to store each of the 1000 estimates of int_a”b g(z)

# NOTE: We will perform the MC integration procedure 1000 times and store each
# integral estimate in the k-th index of vector int_gz_simple240

# NOTE: The for loop (below) will repeat the MC process 1000 times

for (k in 1:1000) {
xs = runif (240, 0, 9/16) #uniformly distributed zvals
gx_values = gx(xs) #the yvals corresponding to the above zvals
avg_gx = mean(gx_values) #compute the mean of the yvals
int_gx_simple240[k] = avg_gx * (9/16) #the mean of yvals times interval length

# NOTE: Compute the mean of the wvector int_gz_simple240 below
mean (int_gx_simple240)

## [1] 1.303507

# NOTE: Compute the standard deviation of the wector int_gz_simple240 below
sd(int_gx_simple240)

## [1] 0.1785548

Problem 1 Part c) Before we can perform Monte Carlo integration with importance sampling, we
need a density function that 1) has the most probability where g(x) is rapidly changing, and 2) allows us to
easily determine a weight function (which will be explored in part (e))



Verify that fx(x) (below) is a valid density function.

=2 0<z<9/16,
fX(I):{3‘/% = /

otherwise

Hint: Recall that a valid density function is positive and has area under the curve equal to one over the
interval of interest.

Problem 1 Part d) Determine the cumulative distribution function of the density function from part (c).
Additionally, determine the corresponding probability transform.

Hint: Recall that we can integrate the density function, fx(z), in order to determine the cumulative
distribution function, Fx (). Then, finding the probability transform, Fy'(z), is the same as finding the
inverse of the cumulative distribution function.



Problem 1 Part e) If we use the density function fx () from part (c) to perform Monte Carlo integration
with importance sampling, what would the weight function w(x) be?

Hint: Recall that we want g(x) = w(z) - fx(x) where g(z) = Wl\/‘z)—n'



Problem 1 Part f) Use Monte Carlo integration with importance sampling to provide 1000 estimates of

fog/ 10 g(x) dx based on a sample of 240 random variables with proposal density fx(x). Determine the mean

and standard deviation of the 1000 estimates of [ 5/16 g(x) dz.

0

set.seed(2022)
int_gx_importance240 = rep(0, 1000) # wvector to store the 1000 estimates of int_a"b g(z)

# NOTE: We wtll perform the MC integration with timportance sampling 1000 times
# and store each integral estimate in the k-th index of wvector
# int_gx_importancel40

for (k in 1:1000) {

# NOTE: First, we want a vector of 240 uniformly distributed RVs that are
# probabilities

u = runif (240)

x = 9/16 * (u"2)

# NOTE: Next, we want a vector of RVs distributed according to your density
# function

# NOTE: z = a wector of 240 RVs distributed according to your density
# function NOTE: which you get from applying the probability transform to u

# NOTE: Finally, we calculate the mean of w(z) for 240 zvals NOTE: This is



# the value of the integral estimated by MC with importance sampling

int_gx_importance240[k] = mean(3 * sqrt(x)/(2 * sin(exp(sqrt(x)) - 1)))

# NOTE: Compute the mean of the wvector int_gz_<importance240 below FILL IN

mean(int_gx_importance240)

## [1] 1.310694

# NOTE: Compute the standard deviation of the wvector int_gxz_importance240 FILL
# IN

sd(int_gx_importance240)

## [1] 0.00529576

Problem 1 Part g) Determine the value of the ratio SDgimpie Mc/SDimportance M, Where SDgimple MC Was
calculated in part (b) and SDiyportance Mc Was calculated in part (f). What does this ratio convey? Which
method (simple MC or MC with importance sampling) is more likely to produce an estimate closer to the
true value of the definite integral? Briefly explain why this method is more accurate, keeping in mind your
response from part (a).

# ratio simple MC sd/importance MC sd
0.1785548/0.00529576

## [1] 33.71656

This ratio conveys that importance MC estimate had a lot less variance and a lot more accuracy,
with a standard deviation over 30 times smaller than the simple MC. The importance sampling
MC is more likely to produce an estimate closer to the true value of the definite integral because
as explained in part (a), importance sampling gives us a better distribution of the relevant x
values to use in extimating area under g(x)



Problem 2. Let L be the length of a pendulum and g be the acceleration due to gravity.
For small angles, the period, T, of a pendulum is given by

L
T =2m|=. 1
J (1)

In 2005, the Huygens space probe landed on the surface of Titan. Pictures of Titan were taken with a
camera designed at the University of Arizona. We will use this relationship and observations from a swinging
pendulum to estimate the acceleration due to gravity on the moon.

Problem 2 Part a) Assume that the length of the pendulum is fixed such that L = 1 meter. Now suppose
the probe makes repeated independent measurements, 77,75, - - - Tos, of the period. If these measurements
have population mean pp = 5.40 seconds and population standard deviation o = 0.12 seconds, determine
the mean and standard deviation of T. That is, determine y7 and 0.

Hint: Recall that we can use the population mean and population standard deviation, together with the
law of large numbers, to compute the mean and standard deviation of T' (the mean of the 25 repeated inde-
pendent measurements). Note that, in relation to the LoLN, each of the 25 repeated measurements/samplings
can be viewed as the sample mean of the corresponding sampling taken from the probe’s sensors.

# mean of T bar
5.4

## [1] 5.4
# std of T bar = sd pop / sqrt (n)

0.12/sqrt(25)

## [1] 0.024

Problem 2 Part b) Use equation (1) to create an estimator, g, for the acceleration due to gravity, g.

Hint: Recall that an estimator § is a function that will calculate an estimate for the acceleration due to
gravity based on the input of experimental data for length and period. Mathematically, this equivalent to
solving equation (1) for g, then labeling this expression as the estimator §. Notice that § will be a function
of T (since L is fixed), so we can write §(T') to be more precise in our notation.






Problem 2 Part c) Using the delta method, estimate the mean and standard deviation of the estimator
g. That is, determine p 3 and oy.

Hint: Recall that, per the delta method as defined in Session 13 notes, for an estimator §(Y') we have that
the mean p1y ~ §(uy) and variance o7 ~ [§/(uy)]* o3 /n.

Problem 2 Part d) Below is a simulation of estimates. Describe the histogram of simulated estimates shown
below (including center, shape, skewness, etc.). Additionally, compare the mean and standard deviation of
the estimates in the simulation below to the values given by the delta method in part (c).

set.seed(2021)

Tbar <- rnorm(1000, mean = 5.4, sd = 0.024)
g_ests <- (4 * pi~2)/(Tbar~2)

hist(g_ests)

Histogram of g_ests
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mean(g_ests)

## [1] 1.353785



sd(g_ests)

## [1] 0.012259

the histogram is in the shape of a normal distribution with center around the 1.35 to 1.36
mark and a very slight right skew. The estimates from the distribution compared to the delta
method have very close mean values with the delta method having a slightly better (lower)
standard deviation.
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