
Worksheet 09 - Method of Moments, Maximum Likelihood
Estimators and Bias

Shawn Kim

Directions: Please upload a PDF to Gradescope that includes both your written responses and corresponding
R code inputs/outputs (if requested) for each problem.

Special Directions This problem starts with a past Group Activity. If you use an equation derived in
the Group Activity, simply cite it as “From GA:”. Be sure to demonstrate the correct use of expectation
notation and mathematical notation/reasoning in your work. Clearly show your work/reasoning by entering
all necessary algebra/calculations as text or inserting a clear well-cropped image of your work using an R
chunk.
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Problem 1.

Recall from Group Activity 16

Daily rainfall data, in millimeters, is modeled as having a Γ(1/2, β) distribution. The density is

fX(x|1/2, β) =
{

0 for x ≤ 0,
β1/2
√

π
x−1/2e−βx for x > 0.

(Do Not Write Up Solutions Again) You already found the method of moments estimator for β based on
rainfall amounts x1, x2, . . . , xn. Hint: For a Γ(α, β) the distributional mean is µ = α

β
and the distributional

variance is σ2 = α

β2 .

(Do Not Write Up Solutions Again) You already gave the estimate β̂ for the monsoon rainfall amounts in
millimeters during July and August, 2017 for Tucson, Arizona.
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⋆ Consider the Method of Moments estimator for β based on the distribution X ∼ Gamma
(

1
2 , β̂

)
.

Problem 1 Part a) On a single figure, plot both the empirical cumulative distribution function for the
monsoon rainfall data above and the appropriate gamma distribution function with α = 1

2 and β = β̂.

# NOTE: The Data and estimator from GA16

x <- c(3, 15, 1, 36, 5, 1, 8, 11, 6, 9, 12, 35, 22, 3, 38, 1, 2)

xbar <- mean(x)
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beta_hat <- 1/(2 * xbar)

# NOTE: The first plot is of the empirical cumulative distribution function

plot(sort(x), (1:length(x))/length(x), type = "s", xlim = c(0, 40), ylim = c(0, 1),
col = "blue", xlab = "x", ylab = "Cumulative Probability")

# NOTE: FILL IN the necessary command for overlaying plots

par(new = TRUE)

# NOTE: The second plot is of the true cumulative distribution function for
# Gamma(0.5, beta_hat)

curve(pgamma(x, 0.5, beta_hat), xlab = "", ylab = "", from = 0, to = 40, ylim = c(0,
1))

# NOTE: Space for adding to the plot for b)

P_g25 = pgamma(25, 0.5, beta_hat)

segments(25, P_g25, 25, 1, col = "red", lwd = 4)

# NOTE: This is what I used to label the indication

text(21, 0.95, "P{X>25} ->")

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P{X>25} −>

Problem 1 Part b) Use β̂ and the appropriate gamma distribution commands in R to estimate the prob-
ability that a monsoon rain exceeds 25 mm. Indicate this value on the plot from part (a).

1 − pgamma(25, 0.5, betahat) = 0.1528808
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Hint: Use the gamma distribution family command with the correct prefix in R to estimate the probability
that a monsoon rain exceeds 25 mm. If computed correctly, P (X > 25) ≈ 0.153.

Hint: To indicate the value on the plot, you can 1) create new copy of the plot below, 2) add to the plot
you created above, or 3) annotating on the plot and uploading an image as shown in part d.

NOTE: To do this task, enter your code in the R chunk below by filling in the blanks denoted with FILL IN
and uncommenting all non-NOTE lines.

# NOTE: calculate P(X > 25) where X ~ Gamma(0.5, beta_hat)
1 - pgamma(25, 0.5, beta_hat)

## [1] 0.1528808

Problem 1 Part c) If µ > 0, confirm that the estimator β̂ is biased upward. Why is it reasonable to
assume that µ > 0?

Hint: Recall that bias can be analyzed via concavity of the estimator. You will need to show that β(µ) is
concave up. Any estimator that is a concave up function, i.e. convex, is known to be biased upward .
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Problem 1 Part d) Use the delta method to estimate the variance in the estimator using the value obtained
for β̂ for the n = 17 monsoon rainfall amounts.
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Problem 2.

Recall from Group Activity 17

For a parameter θ > 0, we model the accuracy of a dart player by the Beta(θ, 1) density

fX(x|θ) =

 0 if x < 0,
θxθ−1 if 0 ≤ x < 1,
0 if 1 ≤ x,

for a continuous random variable X, the distance the dart is from the center of the board.

(Do Not Repeat Solutions) For n observations, you already found the likelihood function.

(Do Not Repeat Solutions) You already found the maximum likelihood estimate for observations x1, . . . , xn.

⋆ Consider the maximum likelihood estimates of θ̂ based on the values θ = 1/4.

Problem 2 Part a) In this context, verify that the Fisher Information I1(θ) = θ−2.

Hint: Recall that the Fisher Information I1(θ) = −Eθ

[
∂2

∂θ2 ln(fX(x|θ))
]
. Note that the subscript on the

Fisher Information I1(θ) implies that n = 1.
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Problem 2 Part b) Compute the standard deviation estimate SD(θ̂) given by the Fisher Information for
θ = 1/4 and n = 50, 500, and 5000.

Hint: Recall Var(θ̂) ≥ 1
n·I1(θ) and I1(θ) = θ−2. You will need to compute the lower bound for SD(θ̂|n = 50),

SD(θ̂|n = 500), and SD(θ̂|n = 5000) where SD(θ̂) ≥ 1√
n·I1(θ)

.

6



7



Problem 2 Part c) Below are 10000 simulations of Maximum Likelihood Estimates of θ̂ based on the values
θ = 1/4 and n = 50, 500, 5000.

NOTE: The R-code for these simulations is in a separate RMD file titled ‘WS17_Simulation_Code’ since
the simulations cause knitting to PDF to take a while.

Based upon the distributions of θ̂, discuss whether the Asymptotic Properties of Maximum Likelihood
Estimators are met, i.e.,

1. Consistency: As the number of observations n increase, the distribution of the MLE θ̂ becomes more
and more concentrated about θ = 1/4, the true state of nature.

2. Asymptotic normality: As the number of observations n increase, the distribution of the MLE θ̂
becomes asymptotically normal.

3. Asymptotic efficiency: As the number of observations n increase, the variance of the distribution
of the MLE θ̂ approaches 1

n·I1(θ) .

NOTE: Enter your response as text below.

1. Consistency is met because we can see as we increase in observations n, the graph distri-
bution becomes more peaked about the true value of 1/4, meaning smaller standard deviation
and more values more concentrated around the true value. 2. Asymptotic normality is met
becuase again we can see from the graphs that as n increases, the graph appearance approaches
to a normal distribution (n=50 was more right skewed and progressively evens out with larger
n) 3. Asymptotic efficiency is met because based on the standard deviations calculated in part
2b and the stds given in 2c, we can see that the stds are closer in value to each other as the
number of observations n increases which implies that their variances become closer in value
to each other as well, although the differences are more prounounced due to squaring for the
variance
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Problem 2 Part d) Below are 10000 simulations of the Method of Moments estimates of θ̂ based on the
values θ = 1/4 and n = 50, 500, 5000.

NOTE: The R-code for these simulations is in a separate RMD file titled ‘WS17_Simulation_Code’ since
the simulations cause knitting to PDF to take a while.

Compare the Maximum Likelihood Estimates simulations used in part (c) with the equivalent Method of
Moments simulations above. How do these results explain why Maximum Likelihood Estimation is preferred
to Method of Moments for parameter estimation?

Hint: Think about the standard deviations, but don’t forget to address the means as well.

NOTE: Enter your response as text below.

We can compare the standard deviations and means to see that the maximum likelihood
estimator is much more accurate and precise than the method of moments estimation due to
closer averages to the true value and lower standard deviations for each n observations
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