
Autonomous Waypoint Navigation
Software for Raspberry Pi 5

Shawn Kim

Introduction

This software program
enables autonomous

waypoint navigation for a
mobile platform using a

Raspberry Pi 5.

The system uses GPS data
to guide the platform from

one location to another
along a predefined series

of static waypoints.

Requirements
Coverage

Requirements
Coverage:
Requirements
Matrix

Requirement Status

Interface with GPS module via USB or GPIO serial Implemented

Calculate real-time position and heading from GPS input Implemented

Develop waypoint-following algorithm Implemented

Implement proximity detection for waypoint arrival Implemented

Output navigation heading and velocity commands Implemented

Configurable waypoints via JSON or CSV file Implemented

Documentation on waypoint file interpretation Implemented

Fault detection for GPS signal loss Implemented

Log navigation decisions with timestamps Implemented

Use Raspberry Pi 5 with 64-bit Debian-based OS Implemented

Programming language Python 3 or C++ Implemented

Use pyserial, pynmea2, or gpsd for GPS communication Implemented

Navigation math with numpy Implemented

Optional visualization with matplotlib or folium Deferred

Provide file I/O for waypoints and logs Implemented

Optional CLI or GUI for system control Deferred

Complete software package tested on Raspberry Pi 5 Implemented

Provide biweekly status reports Implemented

Documentation: code comments, README, setup and
troubleshooting instructions Implemented

Test Report for navigation between at least 3 waypoints Implemented

Presentation of completed software Implemented

Requirements
Coverage:
References

Statement of Work for
Taewoo_051425.docx

Autonomous
Waypoint Navigation

System Test
Report.docx

Technical Requirements

Technical Requirements: Tool Stack

Platform: Raspberry Pi 5 OS Lite

Programming Languages: C/C++23, Shell, Python

GPS Driver: gpsd, gpsd-clients

Build Tools: git, cmake, clang/gcc, sanitizer

C++ Libraries: libgps, concorde, nlohmann_json

Python Libraries: matplotlib

Technical
Requirements:
Tool Stack
(cont’d)

Raspberry Pi OS Lite (64-bit Debian Bookworm): Operating system platform for software deployment.

C++: Core programming language for system logic and navigation computations.

Python: Used data visualization of waypoint visitation order

gpsd/gpsd-clients: Daemon to interface and read GPS data from the dongle.

Git: Used to pull repo on Raspberry Pi

Cmake: Used to configure the build and compilation of the C++ project.

Clang/GCC & Address Sanitizer: Used to compile the project and address sanitizers were used as a tool
for memory leak detection and ensuring software stability.

Libgps: C++ library to interface with gpsd-managed socket through API.

Concorde TSP Solver: Solver for Traveling Salesman Problem used for waypoint planning.

Nlohmann_json: C++ JSON library for navigation output.

Matplotlib: Python library to plot planned navigation route.

Technical Requirements: Interfaces

• Navigation software includes CLI to specify required
files/directories:
• ‘.csv’ file/directory to load in user-defined static waypoints
• ‘.tsp’ directory to communicate with Concorde TSP Solver
• ‘.sol’ directory to write out Concorde visiting order solution
• ‘.log’ directory to log navigation output
• ‘.png’ directory to plot tour of waypoints

• Details of these file interfaces are documented in the Git
repository.

Test Automation

Test Automation: Summary

• Automated Test Coverage:
• Over 50% of all required tests have been automated.
• Automated tests covers navigation algorithm correctness.
• Tested in the “run” phase of the CI/CD pipeline after the system has been built and

installed in Raspberry Pi OS-like environment (Debian Bookworm).
• Success criteria is the successful completion of the “run” phase.
• The other tests that were performed manually were navigation logging that demonstrated

GPS input handling, proximity detection, and output reliability.
• Execution Results:

• Automated tests include waypoint CSV scenarios ranging from 5 to 50 waypoints.
• Test results clearly documented in “Autonomous Waypoint Navigation System Test

Report.docx”, demonstrating successful and consistent verification.
• Automation Tools Used:

• GitLab CI/CD (.gitlab-ci.yml)

Static Analysis

Static Analysis: Summary

• Static Analysis Tools:
• Utilized compiler-integrated tools (Clang/GCC Address Sanitizer) for static and

dynamic analysis.

• Summary of Findings:
• No high or medium-severity issues identified.
• All identified minor issues were resolved during iterative development and testing cycles.

• Risk Assessment:
• Final software is assessed as low-risk, demonstrating reliability, safety, and stability.
• Memory leaks, undefined behaviors, and potential crashes thoroughly investigated and

mitigated.

• Evidence of Assurance:
• GitLab CI/CD process builds and runs program with a run-time address sanitizer that

does not trigger during execution and after completion of program.

CI/CD Pipeline

CI/CD
Pipeline:

.gitlab-ci.yml

Software Bill of
Materials

Software Bill of
Materials

Project Name: Autonomous Waypoint
Navigation Software

Platform: Raspberry Pi 5 (Debian-based
OS)

Author of SBOM: Shawn Kim (Software
Developer)

SBOM Assembly Date: June 25, 2025

SOBM: Project-developed Software

Component Version Supplier Libraries/De
pendencies

Dependency
Relationship License Notes

Autonomous
Navigator
(C++)

v1.0.0 Team-
developed

STL,
filesystem,
chrono,
iostream

Core
Application

MIT (project
default)

Primary
software
logic

SOBM: Open-source and Third-party
Components

Componen
t Version Supplier/S

ource
Libraries
Used

Dependen
cy License

Known
Vulnerabili
ties

Notes

Concorde
TSP Solver 03.12.19 Concorde

TSP

Standalone
Binary (no
direct
API/library
calls)

Waypoint
Optimizatio
n

Academic
Free
License

None
Reported

Binary
integration,
no direct
linking

GPSD 3.25 GPSD
Project libgps-dev GPS Input BSD

License
None
Reported

Used for
GPS
integration

nlohmann/
json 3.11.2

JSON for
Modern
C++

Header-
only

JSON
Config
Parsing

MIT License None
Reported

Configurati
on parsing
and output
formatting

https://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://gpsd.gitlab.io/gpsd/
https://gpsd.gitlab.io/gpsd/
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json

SOBM: Development and Test Environment
Tools

Tool Version Supplier Dependency
Relationship License

Known
Vulnerabiliti
es

Notes

Debian
(Bookworm) 12 Debian Base OS GPLv2 None

Reported

Developmen
t and CI/CD
pipeline
container
image

Clang/GCC
Compiler
Suite

Clang ≥16,
GCC ≥13

LLVM
Project, GNU
Compiler
Collection

Compilation
and Analysis

GPLv3
(GCC),
Apache 2.0
(Clang)

None
Reported

Address
sanitizer
used for
static/dynam
ic analysis

https://www.debian.org/

SOBM:
Additional
Information

github.com/kimsh02/awns-rpi5

All source code components and
build scripts are hosted in the project
repository:
github.com/kimsh02/awns-rpi5.

Dependency relationships and
licenses were verified as of SBOM
assembly date.

No known vulnerabilities were
reported in the components used at
the time of assembly.

https://github.com/kimsh02/awns-rpi5

System Integration

System Integration: Hardware Modules

• Raspberry Pi 5 (16GB)
• Raspberry Pi 5 charger (CanaKit 45W USB-C Power Supply with PD

for Raspberry Pi 5 (27W @ 5A))
• GPS Dongle (VK-162 G-Mouse USB GPS Dongle Navigation Module

External GPS Antenna Remote Mount USB GPS Receiver for
Raspberry Pi Support Google Earth Window Linux Geekstory)

• A flash drive (8GB+)

Navigation Algorithm

Navigation Algorithm: Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is a classic optimization
problem where a salesman must find the shortest route to visit a
number of cities exactly once and return to the starting point.

This is the problem that the navigation algorithm is trying to solve.

Navigation Algorithm: Concorde TSP Solver

• The Concorde TSP solver is a software package designed to solve
the symmetric traveling salesman problem (TSP) and related
network optimization problems.

• It is known for its ability to find provably optimal solutions for large
TSP instances using a branch-and-cut algorithm.

• For this reason, Concorde is the static waypoint planner chosen
for the navigation system.

Navigation Algorithm: Concorde TSP Solver
(cont’d)
• The authors didn’t intend for anyone to use it as a C/C++ API in

other projects; it was written as a research-grade standalone
solver, not a reusable library.

• Academic software like Concorde entails
• Solving a big math problem (TSP) and winning all the benchmarks
• But not exporting most functions and little to no API documentation

• Acceptable usage is to build the full binary and call it as it does in
the navigation system.

• Details are documented in the Git repository.

Navigation Algorithm: Proximity Detection

The GPS module is accurate up to around ~3-5 meters in an urban environment.

Idea is to set a proximity radius threshold for determining arrival at each
waypoint.

Do this by comparing the current position of the navigation system to the
position of the current waypoint that it is visiting.

Conceptually, we are computing the Euclidean distance between two points.

Navigation Algorithm: Proximity Detection
(cont’d)
• Because the Earth is (roughly) a

sphere, Euclidean (flat) distance
formulas are inaccurate over
large distances. The Haversine
formula accounts for Earth’s
curvature.

• The Haversine formula is a
mathematical method used to
calculate the great-circle
distance (shortest distance over
the Earth’s surface) between two
points specified by their latitude
and longitude.

Autonomous Control
Input

Autonomous Control Input: Navigation Output

Logged to stdout and
optionally to a log file if the

user specifies a log directory
in the CLI

Generated in JSON string
format
• JSON is a popular and universal

format choice for data exchange
• Suitable for interpretation of

directions by a downstream motion
controller or vehicle controller.

Autonomous Control Input: Navigation Output
for Simulated Velocity
• Bearing: reported as degrees from true

North
• Destination: reported in latitude, longitude,

and waypoint which is the order number in
which the coordinate was read from the
.csv file

• GPS Position: reported in latitude, longitude
as it was polled from the GPS dongle

• Simulated Position: reported in latitude,
longitude as it was computed from the
user-set simulated velocity (for debugging)

• Timestamp: reported in YYYY-MM-DD Hour-
Minute-Second format

• Velocity: user-set simulated velocity
reported in meters per second

• Used for debugging and/or when there is
no downstream motor controller.

Autonomous Control Input: Navigation Output
for GPS
• Bearing: reported as degrees from true

North
• Destination: reported in latitude,

longitude, and waypoint number as it
was read from the .csv file

• GPS Position: reported in latitude,
longitude as it was polled from the GPS
dongle

• Timestamp: reported in YYYY-MM-DD
Hour-Minute-Second format

• Used for passing directions to a
downstream motor controller

• Realistically, only the `bearing`
value is of interest to the controller

Configurability

Configurability: Waypoints

• The program will read in a series of static waypoints via a .csv file
• Through a user-specified file/directory input in the CLI.

• Must have two columns with headers specifying latitude and
longitude and in that order.

• A tests/csv directory is included in the Git repository providing test
CSV files.

• Documentation of this is also specified in the Git repository.

Configurability: Waypoints (cont’d)

Fail-Safes and Logging

Fail-Safes and Logging: Fault Detection

• Gracefully logs errors and exits
upon failure to connect to the
GPS stream or upon detection of
GPS signal loss during execution.

• Handles other signal jitters
including
• GPS stream read errors
• Insufficient GPS data (it at least

needs to report 2D coordinates)
• Stale GPS data in socket
• GPS read timeouts

• Lenient GPS polling logic is policy
in case of failed attempts due to
the above

Fail-Safes and Logging: Fault Detection
(cont’d)

Documentation

Documentation: API

The developer can modify the source code as they see fit.

As-is, the navigation system provides a simple API that can be
integrated with the development of a downstream motor controller.

The idea is to work with a
‘Navigator’ object in the code

Has a total of 5 methods that you can call

Documentation:
API (cont’d)

• #include "navigator.hpp”

Headers

• Navigator(int argc, const char **argv) noexcept
• void start(void)
• void setProximityRadius(double r) noexcept
• void setSimulationVelocity(double v) noexcept
• std::optional<json> getOutput(void)

Methods

• ‘main.cpp’ contains an example usage of initializing and
running the navigator.

Git repository documents specifics of the API

Test Report

Test Report:
Brief

Navigation
system can plan
visiting order of

50+ waypoints in
less than 1

second.

Plots a
visualization of

the visiting order
via an installed
Python script.

Full testing suite
and results are
uploaded in the
‘tests/csv’ and
‘tests/graph’
directories in the
Git repository.
• Sample navigation

logs are uploaded in
the ‘tests/log’
directory.

Test Report: Navigation Planner
Correctness

Test Report: 5_line.csv (0.004235 s)

Test Report: 5_allaround.csv (0.003660 s)

Test Report: 10_oneside.csv (0.002295 s)

Test Report: 10_clusters.csv (0.002183 s)

Test Report: 15_spiral.csv (0.008457 s)

Test Report: 15_line.csv (0.007012 s)

Test Report: 30_spiral.csv (0.072919 s)

Test Report: 30_oneside.csv (0.042657 s)

Test Report: 50_clusters.csv (0.123383 s)

Test Report: 50_spiral.csv (0.083751 s)

Test Report: 50_allaround.csv (0.141592 s)

Test Report: Software Assurance

Test Report: Software
Assurance
• Navigation system does not have any memory leaks.

• Clang/GCC (compiler) address sanitizer was used
to profile the code at compile-time and run-time.

Test Report: Software Assurance (cont’d)

• Navigation system logging was tested on a planned tour for 30_lines.csv with
proximity radius set to 20 meters and simulation velocity set to 20 meters per
second.

• Simulation lasted for ~1 hour, and navigation output was generated to
completion without crashing.

Test Report: Software Assurance (cont’d)

• Officially, the navigation system can run up to 1 hour in providing
output.
• In theory, the navigation system runs indefinitely if the GPS stream

provides data.

• The navigation system has not been observed to crash during the
various stages of testing and is not designed to crash but rather
catch and exit on all errors gracefully.
• A ‘crash’ could be defined as an instance where the system gracefully

logged and exited on a GPS read error during navigation output which has
been observed and is expected and good behavior.

Known Anomalies

Known Anomalies: Risk Assessment

ID Anomaly
Description

Observed Conditions Frequency Impact Assessment Risk
Level

Mitigation Strategy

1 GPS Signal
Jitters

Brief drops in GPS
connection or intermittent
data reception.

Rare

Minor disruptions in real-time
navigation accuracy. Temporary
reduced reliability of navigation
instructions.

Low

Implemented lenient GPS polling
logic; gracefully logs errors and
resumes normal operations
automatically.

2
Dependency
on Concorde
Binary

Lack of direct API
integration; external
Concorde solver binary
dependency.

Always

Limits system flexibility;
potential performance impacts
due to external process
invocation overhead.

Medium

Clearly documented usage;
potential future refactoring to
integrate a dedicated, native TSP
solver.

3 Waypoint File
Formatting

CSV input strictly requires
latitude and longitude
columns in exact order and
format.

Always
Risk of user input error leading
to incorrect waypoint parsing or
runtime failures.

Medium
Comprehensive documentation
provided; rigorous CSV format
validation implemented.

4
No GUI
Interface
Implemented

CLI-based usage with no
graphical user interface.

Always

Reduced ease-of-use,
particularly for less technical
users; may impact broader user
adoption.

Low

Planned future GUI
implementation; current CLI
includes thorough
documentation.

Known
Anomalies:
Overall Risk
Assessment

The software is stable and reliable,
with no anomalies posing critical or
high risk.

Identified anomalies have
documented mitigations and clear
guidance provided in the user
documentation.

The product can be safely released
with current anomalies, given the
existing mitigation strategies.

Technical Debt

Technical Debt: Summary

ID Technical Debt
Description

Reason for
Deferral

Impact if
Unaddressed

Recommended
Future Action

1 No GUI Interface
Implementation

Prioritization of core
navigation logic and
reliability.

Reduced user-
friendliness; higher
learning curve.

Plan incremental
development of a
lightweight GUI for
future releases.

2
Dependency on
External Concorde
TSP Binary

Project timeline
constraints;
complexity of native
solver integration.

Limits scalability,
adds process
overhead, reduces
flexibility.

Evaluate and
integrate a native or
API-based TSP
solver.

3
Strict CSV
Waypoint Format
Requirement

Initial requirement
prioritization and
time constraints.

User errors and
potential runtime
failures if CSV
format deviates.

Add enhanced CSV
input validation and
error handling.

Lessons Learned

Lessons
Learned

Shift-Left Security
Integration

• I should have integrated static application security testing (SAST)
tools (e.g., clang-tidy, Bandit) into our CI pipeline from day one to
catch vulnerabilities early.

Automated
Dependency

Scanning

• Incorporating an automated vulnerability scanner (e.g., Trivy or
OWASP Dependency-Check) alongside our SBOM would have
ensured we tracked and addressed third-party risks continuously.

Container
Hardening Best

Practices

• Building minimal, non-root Docker images and running container-
scanning checks as part of CI would have reduced our attack
surface before deployment.

Expanded Test
Automation

Coverage

• Although I automated 50% of tests, shifting to a test-driven
development (TDD) approach would have increased coverage,
caught logic flaws earlier, and reduced late-stage debugging.

Success Criteria

Success Criteria: Checklist
• System reliably reads GPS data on Raspberry Pi 5 (slide 22)
• Waypoint algorithm guides system from point to point (slide 30)
• Navigation decisions are logged and reproducible (slide 16)
• Software runs continuously without crashing for ≥30 minutes

(slide 43)
• Clear, well-documented code and setup instructions

(https://github.com/kimsh02/awns-rpi5)

https://github.com/kimsh02/awns-rpi5
https://github.com/kimsh02/awns-rpi5
https://github.com/kimsh02/awns-rpi5

Thank You

	Slide 1: Autonomous Waypoint Navigation Software for Raspberry Pi 5
	Slide 2: Introduction
	Slide 3: Requirements Coverage
	Slide 4: Requirements Coverage: Requirements Matrix
	Slide 5: Requirements Coverage: References
	Slide 6: Technical Requirements
	Slide 7: Technical Requirements: Tool Stack
	Slide 8: Technical Requirements: Tool Stack (cont’d)
	Slide 9: Technical Requirements: Interfaces
	Slide 10: Test Automation
	Slide 11: Test Automation: Summary
	Slide 12: Static Analysis
	Slide 13: Static Analysis: Summary
	Slide 14: CI/CD Pipeline
	Slide 15: CI/CD Pipeline: .gitlab-ci.yml
	Slide 16: Software Bill of Materials
	Slide 17: Software Bill of Materials
	Slide 18: SOBM: Project-developed Software
	Slide 19: SOBM: Open-source and Third-party Components
	Slide 20: SOBM: Development and Test Environment Tools
	Slide 21: SOBM: Additional Information
	Slide 22: System Integration
	Slide 23: System Integration: Hardware Modules
	Slide 24: Navigation Algorithm
	Slide 25: Navigation Algorithm: Traveling Salesman Problem (TSP)
	Slide 26: Navigation Algorithm: Concorde TSP Solver
	Slide 27: Navigation Algorithm: Concorde TSP Solver (cont’d)
	Slide 28: Navigation Algorithm: Proximity Detection
	Slide 29: Navigation Algorithm: Proximity Detection (cont’d)
	Slide 30: Autonomous Control Input
	Slide 31: Autonomous Control Input: Navigation Output
	Slide 32: Autonomous Control Input: Navigation Output for Simulated Velocity
	Slide 33: Autonomous Control Input: Navigation Output for GPS
	Slide 34: Configurability
	Slide 35: Configurability: Waypoints
	Slide 36: Configurability: Waypoints (cont’d)
	Slide 37: Fail-Safes and Logging
	Slide 38: Fail-Safes and Logging: Fault Detection
	Slide 39: Fail-Safes and Logging: Fault Detection (cont’d)
	Slide 40: Documentation
	Slide 41: Documentation: API
	Slide 42: Documentation: API (cont’d)
	Slide 43: Test Report
	Slide 44: Test Report: Brief
	Slide 45: Test Report: Navigation Planner Correctness
	Slide 46: Test Report: 5_line.csv (0.004235 s)
	Slide 47: Test Report: 5_allaround.csv (0.003660 s)
	Slide 48: Test Report: 10_oneside.csv (0.002295 s)
	Slide 49: Test Report: 10_clusters.csv (0.002183 s)
	Slide 50: Test Report: 15_spiral.csv (0.008457 s)
	Slide 51: Test Report: 15_line.csv (0.007012 s)
	Slide 52: Test Report: 30_spiral.csv (0.072919 s)
	Slide 53: Test Report: 30_oneside.csv (0.042657 s)
	Slide 54: Test Report: 50_clusters.csv (0.123383 s)
	Slide 55: Test Report: 50_spiral.csv (0.083751 s)
	Slide 56: Test Report: 50_allaround.csv (0.141592 s)
	Slide 57: Test Report: Software Assurance
	Slide 58: Test Report: Software Assurance
	Slide 59: Test Report: Software Assurance (cont’d)
	Slide 60: Test Report: Software Assurance (cont’d)
	Slide 61: Known Anomalies
	Slide 62: Known Anomalies: Risk Assessment
	Slide 63: Known Anomalies: Overall Risk Assessment
	Slide 64: Technical Debt
	Slide 65: Technical Debt: Summary
	Slide 66: Lessons Learned
	Slide 67: Lessons Learned
	Slide 68: Success Criteria
	Slide 69: Success Criteria: Checklist
	Slide 70: Thank You

