Autonomous Waypoint Navigation
Software for Raspberry Pi 5

Shawn Kim

Introduction

This software program
enables autonomous

waypoint navigation for a
mobile platform using a
Raspberry Pi 5.

The system uses GPS data
to guide the platform from
one location to another
along a predefined series
of static waypoints.

Requirements
Coverage

Requirement Status

Re q u I re m e ntS Interface with GPS module via USB or GPIO serial Implemented

Calculate real-time position and heading from GPS input Implemented

C Ove ra ge : Develop waypoint-following algorithm Implemented
Implement proximity detection for waypoint arrival Implemented

R : t Output navigation heading and velocity commands Implemented
e q u I re m e n S Configurable waypoints viaJSON or CSV file Implemented

° Documentation on waypoint file interpretation Implemented

M atrlx Fault detection for GPS signal loss Implemented

Log navigation decisions with timestamps Implemented
Use Raspberry Pi 5 with 64-bit Debian-based OS Implemented
Programming language Python 3 or C++ Implemented
Use pyserial, pynmea2, or gpsd for GPS communication Implemented
Navigation math with numpy Implemented
Optional visualization with matplotlib or folium Deferred

Provide file I/0 for waypoints and logs Implemented

Optional CLI or GUI for system control Deferred

Complete software package tested on Raspberry Pi5 Implemented

Provide biweekly status reports Implemented

Documentation: code comments, README, setup and
troubleshooting instructions Implemented

Test Report for navigation between at least 3 waypoints Implemented

Presentation of completed software Implemented

Requirements
Coverage:
References

e

Autonomous
Waypoint Navigation
System Test
Report.docx

~

Technical Requirements: Tool Stack

Platform: Raspberry Pi 5 OS Lite

Programming Languages: C/C++23, Shell, Python

GPS Driver: gpsd, gpsd-clients

Vs

Build Tools: git, cmake, clang/gcc, sanitizer

&

Vs

C++ Libraries: libgps, concorde, nlohmann_json

&

Python Libraries: matplotlib

Technical
Requirements:
Tool Stack
(cont’d)

Technical Requirements: Interfaces

* Navigation software includes CLI to specify required
files/directories:
e ‘csVv’ file/directory to load in user-defined static waypoints
e ‘tsp’ directory to communicate with Concorde TSP Solver
* ‘sol’ directory to write out Concorde visiting order solution
e ‘log’ directory to log navigation output
* ‘‘png’ directory to plot tour of waypoints

e Details of these file interfaces are documented in the Git
repository.

Test Automation

Test Automation: Summary

 Automated Test Coverage:
* Over 50% of all required tests have been automated.
* Automated tests covers navigation algorithm correctness.

* Tested in the “run” phase of the CI/CD pipeline after the system has been built and
installed in Raspberry Pi OS-like environment (Debian Bookworm).

e Success criteriais the successful completion of the “run” phase.
* The other tests that were performed manually were navigation logging that demonstrated
GPS input handling, proximity detection, and output reliability.
* Execution Results:
* Automated tests include waypoint CSV scenarios ranging from 5 to 50 waypoints.
* Testresults clearly documented in “Autonomous Waypoint Navigation System Test
Report.docx”, demonstrating successful and consistent verification.
* Automation Tools Used:
e GitLab CI/CD (.gitlab-ci.yml)

Static Analysis

Static Analysis: Summary

* Static Analysis Tools:
* Utilized compiler-integrated tools (Clang/GCC Address Sanitizer) for static and
dynamic analysis.
* Summary of Findings:
* No high or medium-severity issues identified.
* Allidentified minor issues were resolved during iterative development and testing cycles.

* Risk Assessment:
* Final software is assessed as low-risk, demonstrating reliability, safety, and stability.
* Memory leaks, undefined behaviors, and potential crashes thoroughly investigated and
mitigated.
 Evidence of Assurance:

e GitLab CI/CD process builds and runs program with a run-time address sanitizer that
does not trigger during execution and after completion of program.

CI1/CD Pipeline

1
1
2
3
4

o o~ @ o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
30
31
32
33
34
35
36
37

Raspberry Pi 5 0S Lite
image: debian:bookworm
Define pipeline stages
stages:
- build
- run
Global variables for CMake build configuration
variables:
CMAKE_BUILD_TYPE: Release
Common setup tasks performed before all stages
before_script:
- apt-get update && apt-get install -y build-essential cmake libgps-dev git
Build Stage: Compiles and prepares the executable
build:
stage: build
script:
Execute installation script (clnna!huild!instull Concorde libraries and
executable, install Python libraries and script, build/install Navigation
System executable)
- ./scripts/install.sh
artifacts:
Store compiled binary as an artifact for later stages
paths:
- app/build/awns-rpi5
expire_in: 1 week
RBun Stage: Executes tests using the built executable
run:
stage: run
dependencies:
- build
script:
Ensure the executable has the necessary permissions
- chmod +x app/build/awns-rpib
Provide directory paths required by the executable via standard input to
run waypoint route solver for CSV test suite
-
printf "tests/csv\ntests/tsp\ntests/sol\ntests/graph\n™ \
| ./app/build/awns-rpi5 solve

Software Bill of
Materials

Q Project Name: Autonomous Waypoint
m;k] Navigation Software

Platform: Raspberry Pi 5 (Debian-based
ON)

Software Bill of

MEICIELS
Author of SBOM: Shawn Kim (Software

Developer)

SBOM Assembly Date: June 25, 2025

SOBM: Project-developed Software

Libraries/De | D nden
Component | Version Supplier bra es. © epe. de c.:y License Notes
pendencies | Relationship
STL, :
Autonomous . . Primary
. Team- filesystem, Core MIT (project
Navigator v1.0.0 .. software
developed chrono, Application default))
(C++) logic

ijostream

SOBM: Open-source and Third-party
Components

Componen
t

Concorde
TSP Solver

GPSD

nlohmann/
json

Version

03.12.19

3.25

3.11.2

Supplier/S Libraries

ource

Concorde

ISP

Used

Standalone
Binary (no
direct
APl/library
calls)

libgps-dev

Header-
only

Dependen
cy

Waypoint
Optimizatio
n

GPS Input

INIO]\
Config
Parsing

License

Academic

Free
License

BSD
License

MIT License

Known
Vulnherabili
ties

None
Reported

None
Reported

None
Reported

Notes

Binary
integration,
no direct
linking

Used for
GPS
integration

Configurati
on parsing
and output
formatting

https://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/tsp/concorde.html
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://www.math.uwaterloo.ca/tsp/concorde/downloads/LICENSE
https://gpsd.gitlab.io/gpsd/
https://gpsd.gitlab.io/gpsd/
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json

SOBM: Development and Test Environment

Tools

Tool Version

Debian 12

(Bookworm)

Clang/o0C ¢,
mp GCC=13

Suite

Supplier

Debian

LLVM
Project, GNU
Compiler
Collection

Depe.ndenc.:y License
Relationship

RELERON GPLv2

GPLv3
Compilation (GCCQC),
and Analysis Apache 2.0

(Clang)

Known
Vulnerabiliti
es

None
Reported

None
Reported

Notes

Developmen
t and CI/CD
pipeline
container
image

Address
sanitizer
used for
static/dynam
ic analysis

https://www.debian.org/

SOBM:
Additional
Information

Ll

All source code components and
build scripts are hosted in the project
repository:
github.com/kimsh02/awns-rpi5.

Dependency relationships and
licenses were verified as of SBOM
assembly date.

No known vulnerabilities were

reported in the components used at
the time of assembly.

https://github.com/kimsh02/awns-rpi5

System Integration

System Integration: Hardware Modules

 Raspberry Pi 5 (16GB)

* Raspberry Pi 5 charger (CanaKit 45W USB-C Power Supply with PD
for Raspberry Pi 5 (27W @ 5A))

* GPS Dongle (VK-162 G-Mouse USB GPS Dongle Navigation Module
External GPS Antenna Remote Mount USB GPS Receiver for
Raspberry Pi Support Google Earth Window Linux Geekstory)

* A flash drive (8GB+)

Navigation Algorithm

Navigation Algorithm: Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is a classic optimization
problem where a salesman must find the shortest route to visit a
number of cities exactly once and return to the starting point.

=

This is the problem that the navigation algorithm is trying to solve.

Navigation Algorithm: Concorde TSP Solver

* The Concorde TSP solver is a software package designed to solve
the symmetric traveling salesman problem (TSP) and related
network optimization problems.

* Itis known for its ability to find provably optimal solutions for large
TSP instances using a branch-and-cut algorithm.

* For this reason, Concorde is the static waypoint planner chosen
for the navigation system.

Navigation Algorithm: Concorde TSP Solver
(cont’d)

* The authors didn’tintend for anyone to use it as a C/C++ APl in
other projects; it was written as a research-grade standalone
solver, not a reusable library.

* Academic software like Concorde entails
* Solving a big math problem (TSP) and winning all the benchmarks
* But not exporting most functions and little to no APl documentation

* Acceptable usage is to build the full binary and call it as it does in
the navigation system.

* Details are documented in the Git repository.

Navigation Algorithm: Proximity Detection

The GPS module is accurate up to around ~3-5 meters in an urban environment.

ldea is to set a proximity radius threshold for determining arrival at each
waypoint.

Do this by comparing the current position of the navigation system to the
position of the current waypoint that it is visiting.

Conceptually, we are computing the Euclidean distance between two points.

Navigation Algorithm: Proximity Detection

(cont’d)

* Because the Earthis (roughly) a
sphere, Euclidean (flat) distance
formulas are inaccurate over
large distances. The Haversine
formula accounts for Earth’s
curvature.

* The Haversine formulais a
mathematical method used to
calculate the great-circle
distance (shortest distance over
the Earth’s surface) between two
points specified by their latitude
and longitude.

/* Helper method to check whether destination has been reached */
/// Returns true if 'current' is within proximityRadius_ of 'destination’.
/// curren it {latitude, longitude} in degrees
[/l destination {latitude, longitude} in degrees
/// return true if distance = proximityRadius_
bool Navigator::waypointReached(

const std::pair<double, double> ¤t,

const std::pair<double, double> &destination) const noexcept
{

// 1) convert to radians

constexpr double degToRad = std::numbers::pi / 180.0;

double Pl = current.first * degToRad;
double Al = current.second * degToRad;
double P2 = destination.first * degToRad;
double A2 = destination.second * degToRad;
/! 2) haversine “a”

double dg @2 - ol

double dA A2 - Al

double sinD2 = std::sin(dp / 2);
double sinDA2 = std::sin(dA / 2);
double a =
sinDp2 * sinDp2 + std::cos(pl) * std::cos(@2) * sinDA2 #* sinDA2;
a = std::clamp(v: a, 0.0, 1.0);
// 3) central angle c¢
double ¢ = 2 * std::atan2(std::sqrt(a), std::sqrt(l - a));
// 4) distance and compare
double distance = earthRadius_ * c;
return distance <= proximityRadius_;

R
.A tonomous CWrcu

. y ’
. "’
f -
Sw \
—

Autonomous Control Input: Navigation Output

Autonomous Control Input: Navigation Output
for Simulated Velocity

Bearing: reported as degrees from true
North

Destination: reported in latitude, longitude,
and waypoint which is the order number in
which the coordinate was read from the
.csv file

GPS Position: reported in latitude, longitude
as it was polled from the GPS dongle

Simulated Position: reported in latitude,
longitude as it was computed from the
user-set simulated velocity (for debugging)

Timestamp: reported in YYYY-MM-DD Hour-
Minute-Second format

Velocity: user-set simulated velocity
reported in meters per second

Used for debugging and/or when there is
no downstream motor controller.

{
"bearing”: 25,
"destination™: {
"latitude™: 32.410998,
"longitude™”: -110.990288,
"waypoint": 2
b,
"gps_position": {
"latitude”: 32.398866923,
"longitude”: -110.997004779
b,
"sim_position": {
"latitude”: 32.399682088352556,
"longitude™”: -110.99655458005157
b,
"timestamp”: "2025-06-16 19:54:51",
"velocity": 20.0
}

Autonomous Control Input: Navigation Output
for GPS

* Bearing: reported as degrees from true

North {
« Destination: reported in latitude, "bearing”: 24,
longitude, and waypoint number as it "destination": {
was read from the .csvfile "latitude”: 32.410998,
* GPS Position: reported in latitude, "longitude": -110.990288,
éloonrggﬁtejde as it was polled from the GPS } "waypoint”: 2

* Timestamp: reported in YYYY-MM-DD

Hour-Minute-Second format gps_position”: {

"latitude”: 32.398829749,

* Used for passing directions to a " ; w.
downstream motor controller \ longitude™: -110.996981211

* Realistically, only the " bearing’ .y v o -
value is of interest to the controller timestamp™: "2025-06-19 18:40:25

Configurability

Configurability: Waypoints

* The program will read in a series of static waypoints via a .csv file
* Through a user-specified file/directory input in the CLI.

* Must have two columns with headers specifying latitude and
longitude and in that order.

* Atests/csv directoryis included in the Git repository providing test
CSV files.

* Documentation of this is also specified in the Git repository.

Configurability: Waypoints (cont’d)

1 flatitude,longitude

32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.
32.

398800
310543
416638
384877
426101
326244
480459
484397
401417
398097
322838
354010
468800
412453
415779
383876
498529
471005
406681
336800
323546
371574
397830

,-110.
,-110.
,-111.
,-110.
,-111.
,-111.
o =il
,-110.
,-111.
.-110.
,-110.
,-111.
.-110.
,-111.
, -110.
.-110.
,-110.
, =111,
.-111.
,-111.
, =111,
.-110.
,-111.

997000
923034
073390
982565
040624
066260
088236
967560
047077
915550
897429
026832
999670
054416
907931
946210
995976
087000
052260
037324
085184
932296
055515

10_allaround

latitude

32.398800
32.491510
32.414900
32.448865
32.299868
32.337376
32.330259
32.474241
32.442561
32.490015

longitude

-110.997000
-111.082205
-110.931113
-111.065148
-111.061833
-111.058102
-111.088128
-110.924415
-110.908860
-110.940281

Fail-Safes and Logging: Fault Detection

/* Fix-reading with appropriate error handling */

* Gra cefully logs errors and exits 1ot GRS SRt s i
upon failure to connect to the [Pt a5 o' st fr st o
GPS stream or upon detection of e g
GPS signal loss during execution. e R

std::cerr << "gps_read error: " << gps_errstr(errno)
* Handles other signal jitters -

L] L]
In Clud I ng /* If GPS reports at least latitude and longitude (and maybe not
altitude), return GPSFix struct */
if (data_.fix.mode >= MODE_2D) {

e GPS stream read errors o g

timespec t = data_.fix.time;

[] |nSUffiCient GPS data (it at lea St double fix_ts = static_cast<double>(t.tv_sec) +

static_cast<double>(t.tv_nsec) * 1.0e-9;

needs to report 2D coordinates) /o 1¢ state fix, roturs nullopt +

if (fix_ts <= last_ts_) {

* Stale GPS data in socket I e i et
¢ GPS read timeouts reiurn éP;Fii){(_ 5 data_.fix.latitude,

data_.fix.longitude,
4 data_.fix.track };
* Lenient GPS polling logic is policy o
in case of failed attempts due to ey S T e
the above e

Fail-Safes and Logging: Fault Detection
cont’d e et

{
/* Get GPS reading */
ﬂuto optFix { agps_.waitReadFix() };
/* If can't get GPS reading, return null */
if (loptFix) {
logPrint("(System Message) GPS signal lost. Ending output.”,
/* Wrapper for readFix(), attemps to get 2D fix reading */ truel;
std::optional<@PSFix> GPSClient: :waitReadFix(void) ; SO Sl L
i i U
/* If GPSClient is not connected, return nullopt */ épsg:i i:i?e:zpiziit;?” 4
| 2
= (.conne:ted_) 1lont /* Update 'currPos_' */
_ _ return std::nullopt; currPos_.first = fix.latitude;
int tries = max_tries_; currPos_.second = fix.longitude;
/* Try to get GPS fix */ . R .
while (tries) {
auto optFix { readFix() }; /* GPS poll, if exit is true then exit program */
if (optFix) { void Navigator::gpspoll(bool exit)
/* If we get 2D fix, then return fix =/ {

t tFix; i
return optFix /* Test GPS connection */

}
tries--; while (true) f{
/* If GPS connection test was successful, proceed */

/* Rate limit tries #*/
std::this_thread::sleep_for(:: std::chrono::milliseconds(:: 1000)); if (test@PSConnection()) {

} break;
/* If we don't get any 2D fix max_tries_, return nullopt */ }
return std::nullopt; /* Else, ask user whether to retry connection */
. retryPrompt("GPS connection failed.");
1

if (exit) {
std::exit(0);

Documentation: API

/> The developer can modify the source code as they see fit.

As-is, the navigation system provides a simple APl that can be
integrated with the development of a downstream motor controller.

The idea is to work with a Has a total of 5 methods that you can call
‘Navigator’ object in the code

Ble

e #include "navigator.hpp”

e Navigator(int argc, const char **argv) noexcept

Documentation: * void start(void)
) ¢ void setProximityRadius(double r) noexcept
API (CO nt d) ¢ void setSimulationVelocity(double v) noexcept

e std::optional<json> getOutput(void)

Git repository documents specifics of the API

* ‘main.cpp’ contains an example usage of initializing and

running the navigator.

Test Report:
Brief

128,92

Test Report: 5_line.csv (0.004235 s

TSP Tour Order

(]
kel
=]
=
=
©
—

—0.085
Longitude

Test Report: 5_allaround.csv (0.003660 s)

Test Report: 10_oneside.csv (0.002295 s)

Test Report: 10_clusters.csv (0.002183 s)

Test Report: 15_spiral.csv (0.008457 s

TSP Tour Order

-111.04 -111.02 -111.00 —110.98 —110.96
Longitude

Test Report: 15_line.csv (0.007012 s)

Test Report: 30_spiral.csv (0.072919 s

TSP Tour Order

(]
°
3
=
e}
©
-~

-111.00
Longitude

Test Report: 30_oneside.csv (0.042657 s)

Test Report: 50 _clusters.csv (0.123383 s

TSP Tour Order

(]
°
3
=
e}
©
-~

—111.00 —110.98 -110.96 -110.94
Longitude

—111.04

Test Report: 50_spiral.csv (0.083751 s

TSP Tour Order

w
N
IS

()
o
=]
=
i
-

-111.0
Longitude

Test Report: 50_allaround.csv (0.141592 s

TSP Tour Order

-111.00
Longitude

-

M\ e
‘ N
e wT e Mg A
WS L e T

Test Report: Software
Assurance

* Navigation system does not have any memory leaks.

* Clang/GCC (compiler) address sanitizer was used

Wselection at the end - i ile-ti -ti
o e add to profile the code at compile-time and run-time.

* ob.select=1

-.scene.objects.actiw

lected”™ + str(modifies

#wirror_ob.select = 0

» bpy.context.selected_:
Mata.objects[one.name].se
#wint("please select exacthy ‘

.- OPERATOR CLASSES

S-Weratarz;,e self‘-'t“

mirrorX

ectismt’

"'texg;ve,"bj

Test Report: Software Assurance (cont’d)

* Navigation system logging was tested on a planned tour for 30_lines.csv with
proximity radius set to 20 meters and simulation velocity set to 20 meters per

second.

* Simulation lasted for ~1 hour, and navigation output was generated to
completion without crashing.

1l

"bearing": 355,

"destination": {
"latitude": 32.419003,
"longitude”: -110.998734,
"waypoint": 7

1

"gps_position": {
"latitude": 32.398799759,
"longitude": -110.996986175

15

"sim_position": {
"latitude": 32.398799759,
"longitude”: -110.996986175

e

"timestamp": "2025-06-16 21:16:33",

"velocity”: 2u.u

{

"bearing": 245,

"destination": {
"latitude": 32.3988,
"longitude": -110.997,
"waypoint": 0

}

"gps_position": {
"latitude": 32.398799759,
"longitude": -110.996986175

1

"sim_position": {
"latitude”: 32.399013241483665,
"longitude": -110.99645226812663

1

"timestamp”: "2025-06-16 22:16:39",

"velocity": 20.0

}

[2025-06-16 22:16:41] (System Message) Waypoint reached: [Latitude: 32.3988, Longitude: -110.9970]
4339& ﬂ2025-06-16 22:16:41. (System Message) Navigation has completed.

Test Report: Software Assurance (cont’d)

* Officially, the navigation system can run up to 1 hour in providing
output.

* |In theory, the navigation system runs indefinitely if the GPS stream
provides data.

* The navigation system has not been observed to crash during the
various stages of testing and is not designed to crash but rather
catch and exit on all errors gracefully.

* A‘crash’could be defined as an instance where the system gracefully
logged and exited on a GPS read error during navigation output which has
been observed and is expected and good behavior.

Known Anomalies

Known Anomalies: Risk Assessment

adoption.

Anomaly Risk
ID Observed Conditions Frequenc Impact Assessment Mitigation Strate
Description 9 y P Level g gy
. . Minor disruptions in real-time Implemented lenient GPS pollin
. Brief dropsin GPS . P p P &
GPS Signal X . . navigation accuracy. Temporary logic; gracefully logs errors and
1 . connection or intermittent |Rare . o Low .
Jitters . reduced reliability of navigation resumes normal operations
data reception. . . .
instructions. automatically.
Lack of direct API Limits system flexibility; Clearly documented usage;
Dependency |.
integration; external potential performance impacts . potential future refactoring to
2 |onConcorde . Always Medium |! . ;
. Concorde solver binary due to external process integrate a dedicated, native TSP
Binary . .
dependency. invocation overhead. solver.
. . CS.V nput smCtly. requires Risk of user input error leading Comprehensive documentation
Waypoint File [latitude and longitude
3 . . Always to incorrect waypoint parsing or |Medium |provided; rigorous CSV format
Formatting columns in exact order and : : e
runtime failures. validation implemented.
format.
Reduced ease-of-use, Planned future GUI
No GUI .) : .)
CLI-based usage with no particularly for less technical implementation; current CLI
4 (Interface) ; Always . Low .
graphical user interface. users; may impact broader user includes thorough
Implemented

documentation.

Known
Anomalies:
Overall Risk

Assessment

The software is stable and reliable,
with no anomalies posing critical or
high risk.

|Identified anomalies have
documented mitigations and clear
guidance provided in the user
documentation.

The product can be safely released
with current anomalies, given the
existing mitigation strategies.

Technical Debt

Technical Debt: Summary

ID Technical Debt Reason for Impact if Recommended
Description Deferral Unaddressed Future Action
e Plan incremental
Prioritization of core | Reduced user-
No GUI Interface o .)) . development of a
1 . navigation logic and | friendliness; higher | . .
Implementation L : lightweight GUI for
reliability. learning curve.
future releases.
Project timeline Limits scalability, Evaluate and
Dependency on . . .
constraints; adds process integrate a native or
2 External Concorde : :
. complexity of native | overhead, reduces | APl-based TSP
TSP Binary . . s
solver integration. flexibility. solver.
. . : User errors and
Strict CSV Initial requirement : : Add enhanced CSV
. e . potential runtime : .
3 Waypoint Format prioritization and : : input validation and
. : . failures if CSV :
Requirement time constraints. . error handling.
format deviates.

| essons Learned

Lessons * | should have integrated static application security testing (SAST)
tools (e.g., clang-tidy, Bandit) into our Cl pipeline from day one to

] catch vulnerabilities early.

| earned

e [ncorporating an automated vulnerability scanner (e.g., Trivy or
ot OWASP Dependency-Check) alongside our SBOM would have
Dependency ensured we tracked and addressed third-party risks continuously.

Scanning

e Building minimal, non-root Docker images and running container-
scanning checks as part of Cl would have reduced our attack
surface before deployment.

e Although | automated 50% of tests, shifting to a test-driven
development (TDD) approach would have increased coverage,
caught logic flaws earlier, and reduced late-stage debugging.

Success Criteria: Checklist

» System reliably reads GPS data on Raspberry Pi5 ¥ (slide 22)
 Waypoint algorithm guides system from point to point ™ (slide 30)
» Navigation decisions are logged and reproducible ® (slide 16)

» Software runs continuously without crashing for 230 minutes ¥
(slide 43)

e Clear, well-documented code and setup instructions ¥
(https.//github.com/kimshQ02/awns-rpi5)

https://github.com/kimsh02/awns-rpi5
https://github.com/kimsh02/awns-rpi5
https://github.com/kimsh02/awns-rpi5

Thank You

	Slide 1: Autonomous Waypoint Navigation Software for Raspberry Pi 5
	Slide 2: Introduction
	Slide 3: Requirements Coverage
	Slide 4: Requirements Coverage: Requirements Matrix
	Slide 5: Requirements Coverage: References
	Slide 6: Technical Requirements
	Slide 7: Technical Requirements: Tool Stack
	Slide 8: Technical Requirements: Tool Stack (cont’d)
	Slide 9: Technical Requirements: Interfaces
	Slide 10: Test Automation
	Slide 11: Test Automation: Summary
	Slide 12: Static Analysis
	Slide 13: Static Analysis: Summary
	Slide 14: CI/CD Pipeline
	Slide 15: CI/CD Pipeline: .gitlab-ci.yml
	Slide 16: Software Bill of Materials
	Slide 17: Software Bill of Materials
	Slide 18: SOBM: Project-developed Software
	Slide 19: SOBM: Open-source and Third-party Components
	Slide 20: SOBM: Development and Test Environment Tools
	Slide 21: SOBM: Additional Information
	Slide 22: System Integration
	Slide 23: System Integration: Hardware Modules
	Slide 24: Navigation Algorithm
	Slide 25: Navigation Algorithm: Traveling Salesman Problem (TSP)
	Slide 26: Navigation Algorithm: Concorde TSP Solver
	Slide 27: Navigation Algorithm: Concorde TSP Solver (cont’d)
	Slide 28: Navigation Algorithm: Proximity Detection
	Slide 29: Navigation Algorithm: Proximity Detection (cont’d)
	Slide 30: Autonomous Control Input
	Slide 31: Autonomous Control Input: Navigation Output
	Slide 32: Autonomous Control Input: Navigation Output for Simulated Velocity
	Slide 33: Autonomous Control Input: Navigation Output for GPS
	Slide 34: Configurability
	Slide 35: Configurability: Waypoints
	Slide 36: Configurability: Waypoints (cont’d)
	Slide 37: Fail-Safes and Logging
	Slide 38: Fail-Safes and Logging: Fault Detection
	Slide 39: Fail-Safes and Logging: Fault Detection (cont’d)
	Slide 40: Documentation
	Slide 41: Documentation: API
	Slide 42: Documentation: API (cont’d)
	Slide 43: Test Report
	Slide 44: Test Report: Brief
	Slide 45: Test Report: Navigation Planner Correctness
	Slide 46: Test Report: 5_line.csv (0.004235 s)
	Slide 47: Test Report: 5_allaround.csv (0.003660 s)
	Slide 48: Test Report: 10_oneside.csv (0.002295 s)
	Slide 49: Test Report: 10_clusters.csv (0.002183 s)
	Slide 50: Test Report: 15_spiral.csv (0.008457 s)
	Slide 51: Test Report: 15_line.csv (0.007012 s)
	Slide 52: Test Report: 30_spiral.csv (0.072919 s)
	Slide 53: Test Report: 30_oneside.csv (0.042657 s)
	Slide 54: Test Report: 50_clusters.csv (0.123383 s)
	Slide 55: Test Report: 50_spiral.csv (0.083751 s)
	Slide 56: Test Report: 50_allaround.csv (0.141592 s)
	Slide 57: Test Report: Software Assurance
	Slide 58: Test Report: Software Assurance
	Slide 59: Test Report: Software Assurance (cont’d)
	Slide 60: Test Report: Software Assurance (cont’d)
	Slide 61: Known Anomalies
	Slide 62: Known Anomalies: Risk Assessment
	Slide 63: Known Anomalies: Overall Risk Assessment
	Slide 64: Technical Debt
	Slide 65: Technical Debt: Summary
	Slide 66: Lessons Learned
	Slide 67: Lessons Learned
	Slide 68: Success Criteria
	Slide 69: Success Criteria: Checklist
	Slide 70: Thank You

