
Autonomous Waypoint Navigation System — Test Report

ENGR 498B – Senior Capstone

Author: Shawn Kim

Date: June 22, 2025

1. Abstract

This report summarizes verification testing of the Autonomous Waypoint Navigation
System built for the Raspberry Pi 5. Two test campaigns were executed: (1) Navigation
Planner Test, which verifies correct route computation over varying waypoint sets and
geometric patterns; and (2) Navigation Logging Test, which validates long‐run stability
and logging integrity. The goal is to demonstrate compliance with functional, performance,
and robustness requirements under both simulated and real‐world conditions.

2. Requirements Being Verified

1. Route Computation
o The awns-rpi5 solve command must compute an optimal tour for N = 5, 10,

15, 30, 50 waypoints, arranged in line, spiral, or clustered patterns, without
errors.

2. Performance
o TSP solve time must remain under 1 s for N ≤ 50 (as measured by the built-in

elapsed‐time output).
3. Output Integrity

o Generated JSON must conform to schema v1.0, containing fields latitude,
longitude, sequence, and timestamp.

4. Robustness
o Malformed or out‐of‐order NMEA sentences must be detected, logged, and

discarded without crashing the application.
5. Long-Run Stability

o The awns-rpi5 run command must operate continuously for at least 30
minutes without memory leaks or unhandled exceptions.

3. Test Configuration

Component Details
Hardware Raspberry Pi 5 Model B (16 GB RAM)
 VK-162 G-Mouse USB GPS Receiver

Software Raspberry Pi 5 OS Lite (Debian Bookworm), GCC 12.2, CMake 3.27
 Concorde TSP v03.12
 nlohmann/json v3.11.2, Python 3.10 visualization script

4. Test Procedures

4.1 Navigation Planner Test

1. Data Sets: Five waypoint files (csv.zip):
o 5, 10, 15, 30, 50 points arranged in straight line, spiral, and three‐cluster

patterns.
2. Execution:

 awns-rpi5 solve

2. Verification:
o Parsed JSON against schema v1.0.
o Compared plotted tours (graph.zip) by visual inspection to confirm

optimal/near-optimal ordering.
o Recorded elapsed times printed to stdout.

4.2 Navigation Logging Test

1. Data Sets: Four linearly spaced waypoint files: 5_line.csv, 10_line.csv, 15_line.csv,
30_line.csv.

2. Execution:

 awns-rpi5 run

2. Duration: Let run until JSON output for final waypoint; total run time tracked via
timestamps in logs (log.zip).

3. Stability Check: Monitored for crashes, memory‐leaks (via Clang/GCC address
sanitizer), and log‐file completeness.

5. Test Results

Test Campaign Metric Observed Result Pass/Fail

Planner (N≤50) Correct route output All 25 tours valid
(visual)

Pass

 JSON schema conformance 100 % fields present Pass
 Solve time (max of 25 runs) ≤ 0.85 s Pass
Malformed NMEA
Handling Crash rate under fuzz inputs

0 crashes after
validation Pass

Logging Stability Continuous run time 30 min for 5, 10, 15, 30
pts Pass

 Completion times (5→6 min; 10→14
min; 15→26 min; 30→60 min) As expected Pass

 Memory/leaks No leaks detected by
address sanitizer

Pass

6. Lessons Learned & Next Steps

• Lessons Learned:
o Early integration of fuzz testing for NMEA parsing prevented late-stage

crashes.
o Creating a CI/CD container environment eliminated “it works on my

machine” issues.
o Field trials revealed minor clock drift between Pi system time and GPS

timestamps—must NTP‐sync before each run.
o Team Collaboration: Working with my teammates taught me the critical

importance of clear, early communication and expectations alignment—
unexpected last-minute changes can derail progress.

o Documentation Discipline: Tackling tasks solo underscored the need to
rigorously document the codebase, ensuring that future enhancements or
feature additions are straightforward for any developer as a part of software
maintainability and scalability.

• Next Steps:

1. Add automated NTP sync at program startup.
2. Extend tests to include simulated packet-loss and NMEA jitter scenarios.
3. Draft a formal Security Test Plan per IEEE 829-2020 before the next release.
4. GUI & Refactor: Implement a graphical user interface and refactor the

existing CLI into callable class methods to improve usability and modularity.

▪ Notes: If refactoring the codebase becomes necessary, a
recommendation is to re-use the `GPSClient` and
`ConcordeTSPSolver` classes as-is and look to the `Navigator`
class on how to use `GPSClient` and `ConcordeTSPSolver`.
Otherwise, the `Navigator` class can be minimally refactored for a
GUI development approach with the modification of the CLI
functionality changed into callable class methods.

5. Scenario File Support: Add functionality for embedding GPS waypoints
directly into files, allowing the system to load and execute custom navigation
“scenes” at runtime.

▪ Notes: Dynamically adding waypoints to a tour would require
extending the `Navigator` class or to make a `WaypointManager`
class of sorts. As-is, the system reads waypoints in one go from a CSV
file, and for this new functionality, the system could either maintain a
dynamic list of waypoints in-memory within the `Navigator` class, or
a `WaypointManager` class could be implemented to manage a CSV
file behind the scenes that the system would then read in later as
normal.

7. Attachments & References

• Attachments:
o csv.zip — Waypoint input data sets
o graph.zip — Generated tour plots
o log.zip — Run logs with timestamps

• References:
o ENGR 498B Capstone SOW
o IEEE 829-2020 “Standard for Software and System Test Documentation”
o GitHub repository: https://github.com/kimsh02/awns-rpi5
o GitLab mirror (for CI/CD): https://git.def.engr.arizona.edu/tkim1/awns-rpi5

https://github.com/kimsh02/awns-rpi5

	1. Abstract
	2. Requirements Being Verified
	3. Test Configuration
	4. Test Procedures
	4.1 Navigation Planner Test
	4.2 Navigation Logging Test

	5. Test Results
	6. Lessons Learned & Next Steps
	7. Attachments & References

