Autonomous Waypoint Navigation System — Test Report
ENGR 498B - Senior Capstone
Author: Shawn Kim

Date: June 22, 2025

1. Abstract

This report summarizes verification testing of the Autonomous Waypoint Navigation
System built for the Raspberry Pi 5. Two test campaigns were executed: (1) Navigation
Planner Test, which verifies correct route computation over varying waypoint sets and
geometric patterns; and (2) Navigation Logging Test, which validates long-run stability
and logging integrity. The goal is to demonstrate compliance with functional, performance,
and robustness requirements under both simulated and real-world conditions.

2. Requirements Being Verified

1. Route Computation
o The awns-rpi5 solve command must compute an optimal tour for N =5, 10,
15, 30, 50 waypoints, arranged in line, spiral, or clustered patterns, without
errors.
2. Performance
o TSP solve time must remain under 1 s for N < 50 (as measured by the built-in
elapsed-time output).
3. Output Integrity
o Generated JSON must conform to schema v1.0, containing fields latitude,
longitude, sequence, and timestamp.
4. Robustness
o Malformed or out-of-order NMEA sentences must be detected, logged, and
discarded without crashing the application.
5. Long-Run Stability
o The awns-rpi5 run command must operate continuously for at least 30
minutes without memory leaks or unhandled exceptions.

3. Test Configuration



Component Details
Hardware Raspberry Pi5 Model B (16 GB RAM)
VK-162 G-Mouse USB GPS Receiver

Software  Raspberry Pi 5 OS Lite (Debian Bookworm), GCC 12.2, CMake 3.27
Concorde TSP v03.12
nlohmann/json v3.11.2, Python 3.10 visualization script

4. Test Procedures

4.1 Navigation Planner Test

1. Data Sets: Five waypoint files (csv.zip):
o 5,10,15, 30, 50 points arranged in straight line, spiral, and three-cluster
patterns.
2. Execution:

awns-rpi5 solve

2. Verification:
o Parsed JSON against schemav1.0.
o Compared plotted tours (graph.zip) by visual inspection to confirm
optimal/near-optimal ordering.
o Recorded elapsed times printed to stdout.

4.2 Navigation Logging Test

1. Data Sets: Four linearly spaced waypoint files: 5_line.csv, 10_line.csv, 15_line.csv,
30_line.csv.
2. Execution:

awns-rpi5 run

2. Duration: Let run until JSON output for final waypoint; total run time tracked via
timestamps in logs (log.zip).

3. Stability Check: Monitored for crashes, memory-leaks (via Clang/GCC address
sanitizer), and log-file completeness.



5. Test Results

Test Campaign Metric Observed Result Pass/Fail
Planner (N<50) Correct route output Al.l 25 tours valid Pass
(visual)

JSON schema conformance 100 % fields present  Pass
Solve time (max of 25 runs) <0.85s Pass

Malformed NMEA . 0 crashes after

. Crash rate under fuzz inputs . Pass

Handling validation

Logging Stability Continuous runtime 2?Sm|n fors, 10, 15, 30 Pass
Completion times (526 min; 10>14
min; 1526 min; 3060 min) As expected Pass
Memory/leaks No leaks detected by Pass

address sanitizer

6. Lessons Learned & Next Steps

e LessonsLearned:

o Earlyintegration of fuzz testing for NMEA parsing prevented late-stage
crashes.

o Creating a CI/CD container environment eliminated “it works on my
machine” issues.

o Field trials revealed minor clock drift between Pi system time and GPS
timestamps—must NTP-sync before each run.

o Team Collaboration: Working with my teammates taught me the critical
importance of clear, early communication and expectations alignment—
unexpected last-minute changes can derail progress.

o Documentation Discipline: Tackling tasks solo underscored the need to
rigorously document the codebase, ensuring that future enhancements or
feature additions are straightforward for any developer as a part of software
maintainability and scalability.

+ Next Steps:

Add automated NTP sync at program startup.

Extend tests to include simulated packet-loss and NMEA jitter scenarios.
Draft a formal Security Test Plan per IEEE 829-2020 before the next release.
GUI & Refactor: Implement a graphical user interface and refactor the
existing CLI into callable class methods to improve usability and modularity.

Pon =



Notes: If refactoring the codebase becomes necessary, a
recommendation is to re-use the * GPSClient” and

" ConcordeTSPSolver™ classes as-is and look to the ~ Navigator®
class on how to use " GPSClient” and "~ ConcordeTSPSolver’.
Otherwise, the " Navigator™ class can be minimally refactored for a
GUI development approach with the modification of the CLI
functionality changed into callable class methods.

5. Scenario File Support: Add functionality for embedding GPS waypoints
directly into files, allowing the system to load and execute custom navigation
“scenes” at runtime.

Notes: Dynamically adding waypoints to a tour would require
extending the “ Navigator™ class orto make a * WaypointManager"
class of sorts. As-is, the system reads waypoints in one go from a CSV
file, and for this new functionality, the system could either maintain a
dynamic list of waypoints in-memory within the ~Navigator® class, or
a ~WaypointManager" class could be implemented to manage a CSV
file behind the scenes that the system would then read in later as
normal.

7. Attachments & References

e Attachments:

csv.zip — Waypoint input data sets
graph.zip — Generated tour plots
log.zip — Run logs with timestamps

o

o

o

o References:

o

O
@)
O

ENGR 498B Capstone SOW

IEEE 829-2020 “Standard for Software and System Test Documentation”
GitHub repository: https://github.com/kimsh02/awns-rpi5

GitLab mirror (for CI/CD): https://git.def.engr.arizona.edu/tkim1/awns-rpi5



https://github.com/kimsh02/awns-rpi5

	1. Abstract
	2. Requirements Being Verified
	3. Test Configuration
	4. Test Procedures
	4.1 Navigation Planner Test
	4.2 Navigation Logging Test

	5. Test Results
	6. Lessons Learned & Next Steps
	7. Attachments & References

